

Convolutional Network for Image Synthesis Jun-Yan Zhu

16-726 Learning-based Image Synthesis, Spring 2023

many slides from Alyosha Efros, Phillip Isola, Richard Zhang, James Hays, and Andrea Vedaldi, Jitendra Malik.

Review (data-driven graphics)

Review (data-driven graphics)

Nearest neighbor methods:

- 1. Stored examples
- 2. Calculate distance between two examples
- 3. Voting (label transfer): image blending/averaging

Visual similarity via labels

"Penguin"

"Penguin"

Machine Learning as data association

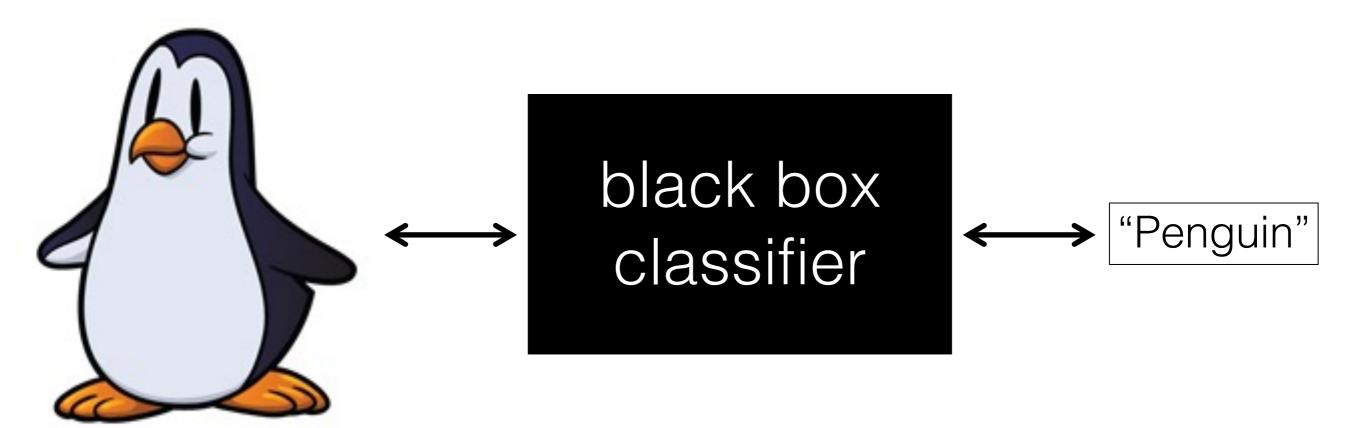


image X

label Y

At test time...

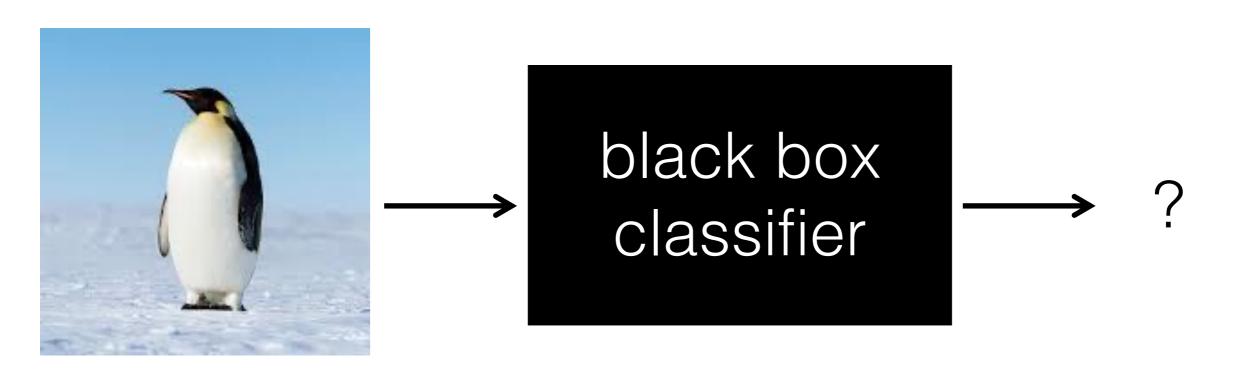


image X

Examples from MNIST dataset [LeCun. 1998]

Warm-up Example: Binary Digit Classification

7 vs. **/**

Learning Approach to Digit Recognition

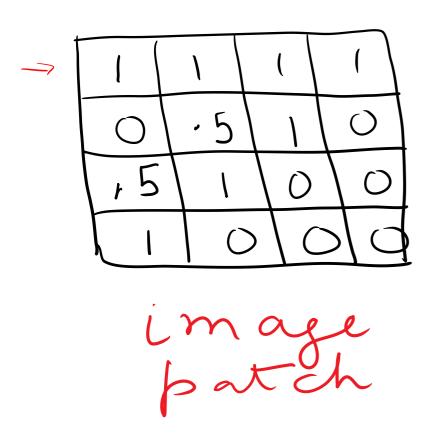
Collect Training Images

- Positive: ファチョファファファファファット
 Negative: ノートーノユーノアコーノー
- Training Time
 - Compute feature vectors for positive and negative example images
 - Train a classifier

Test Time

- Compute feature vector on new test image:
- Evaluate classifier

Let us take an example...

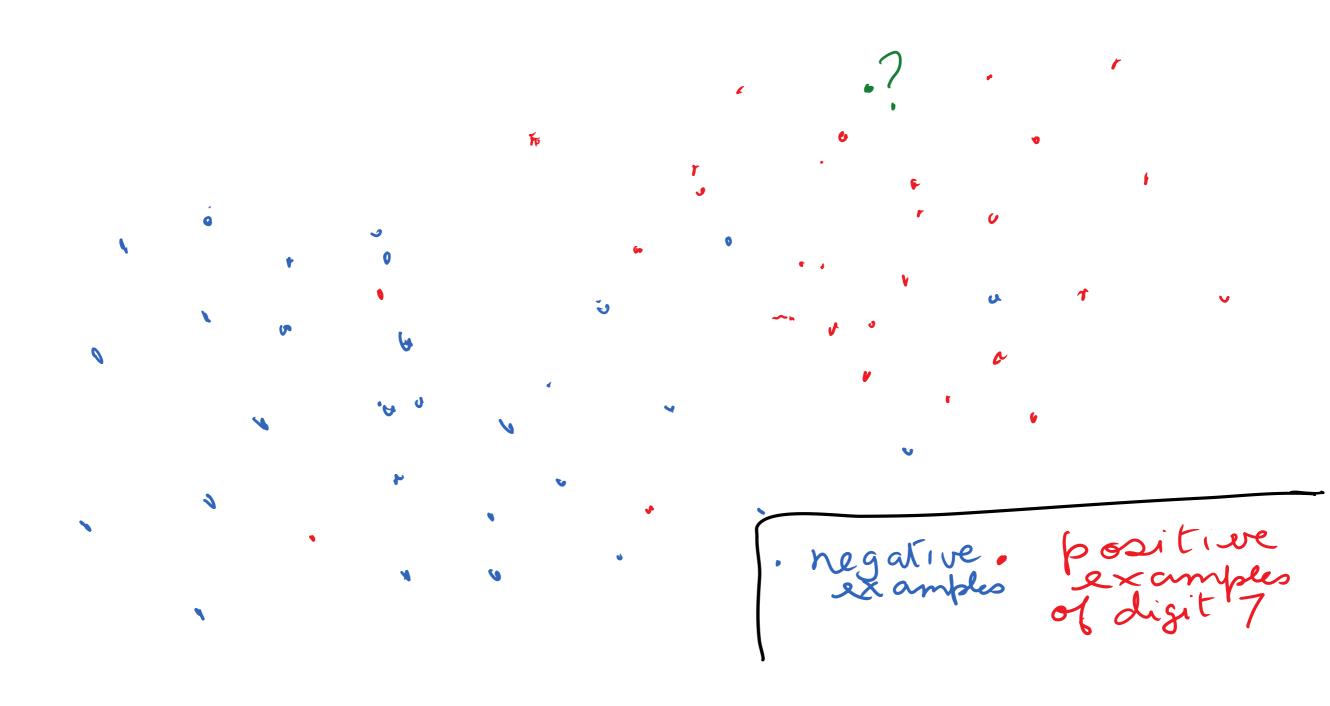


Let us take an example...

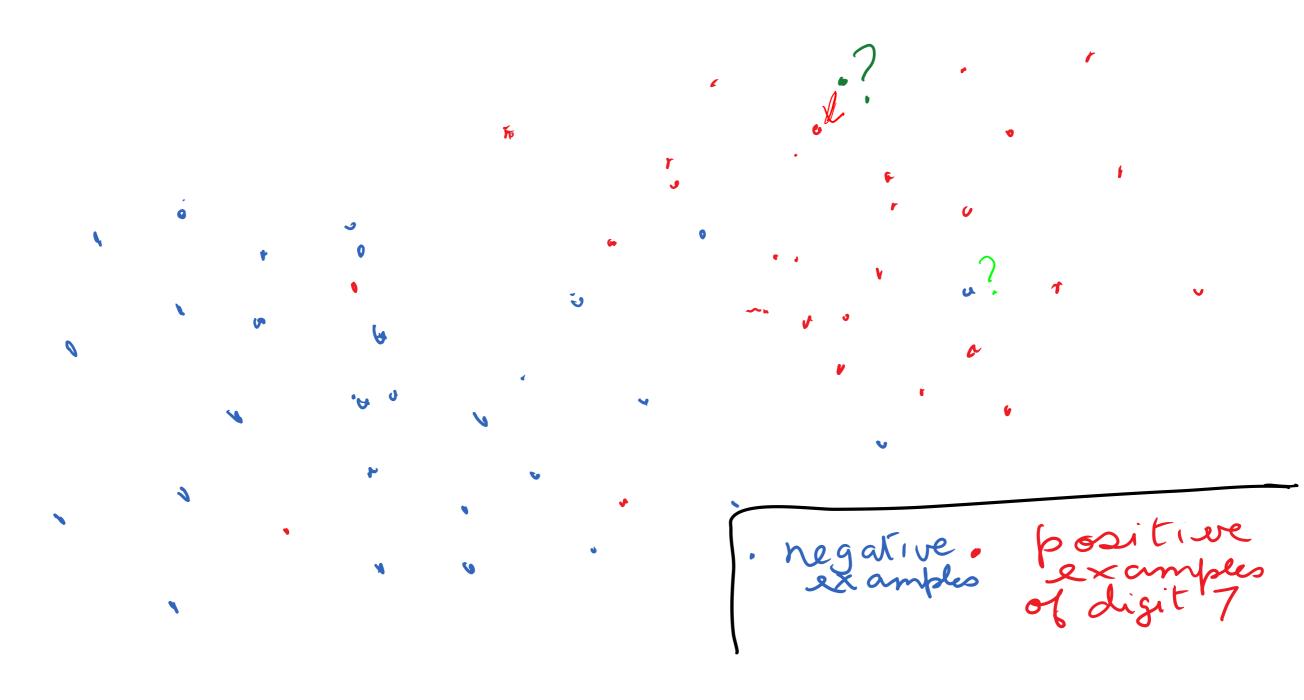


In feature space, positive and negative examples are just points...

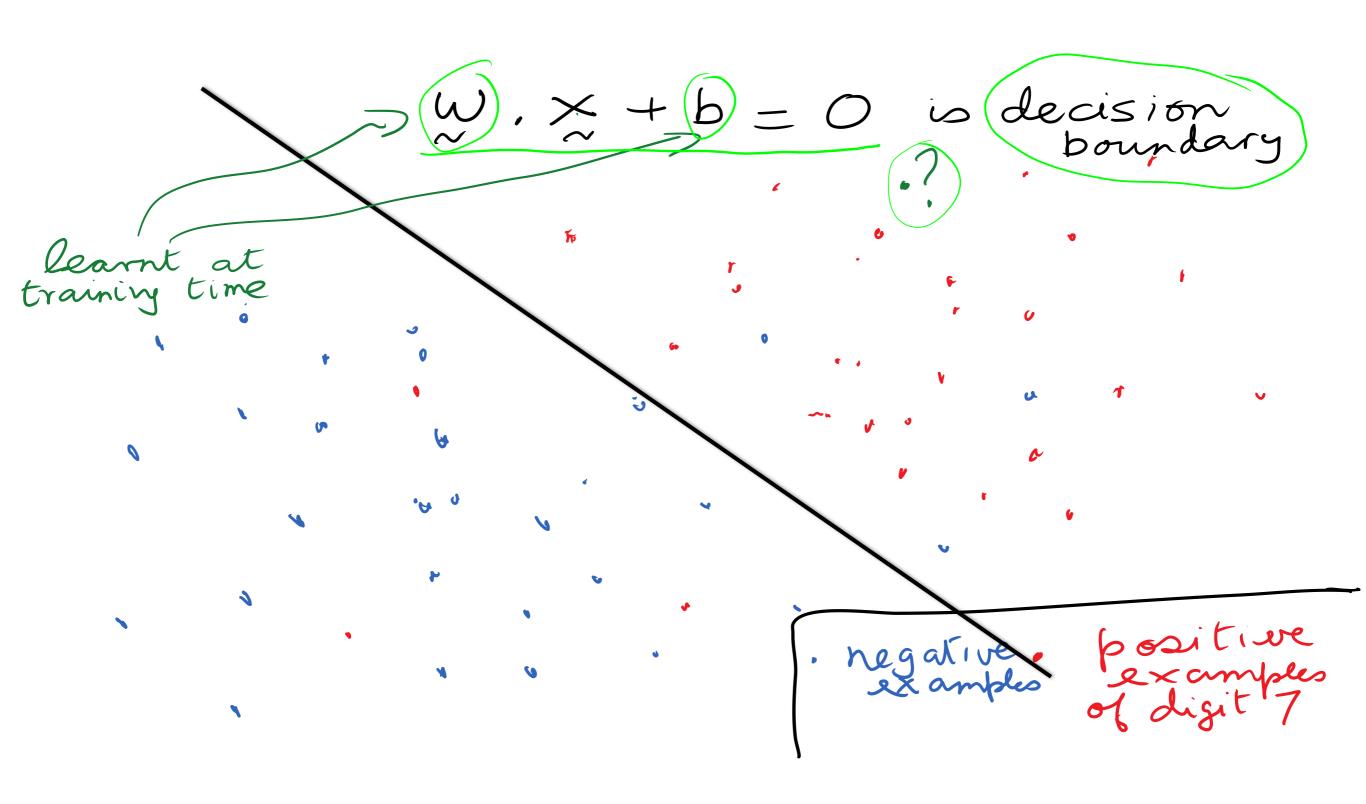
How do we classify a new point?



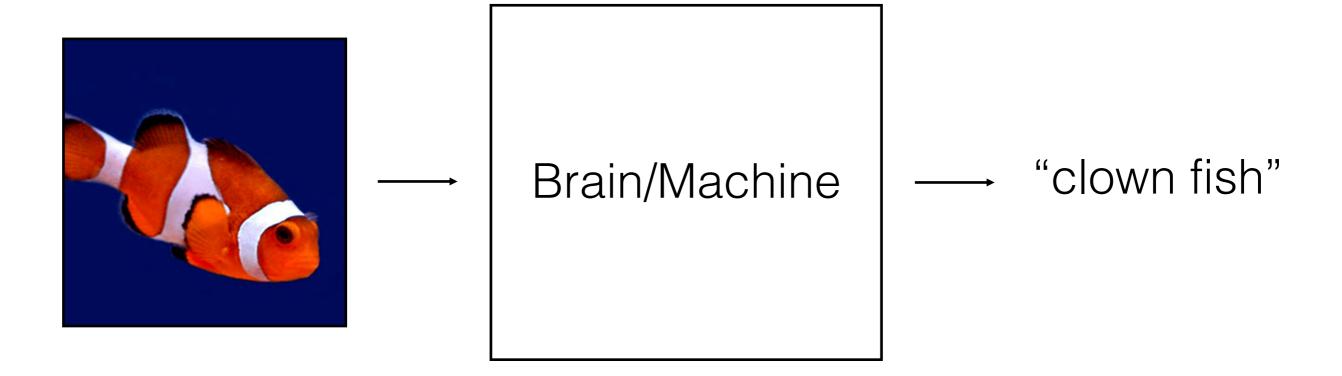
Nearest neighbor rule "transfer label of nearest example"



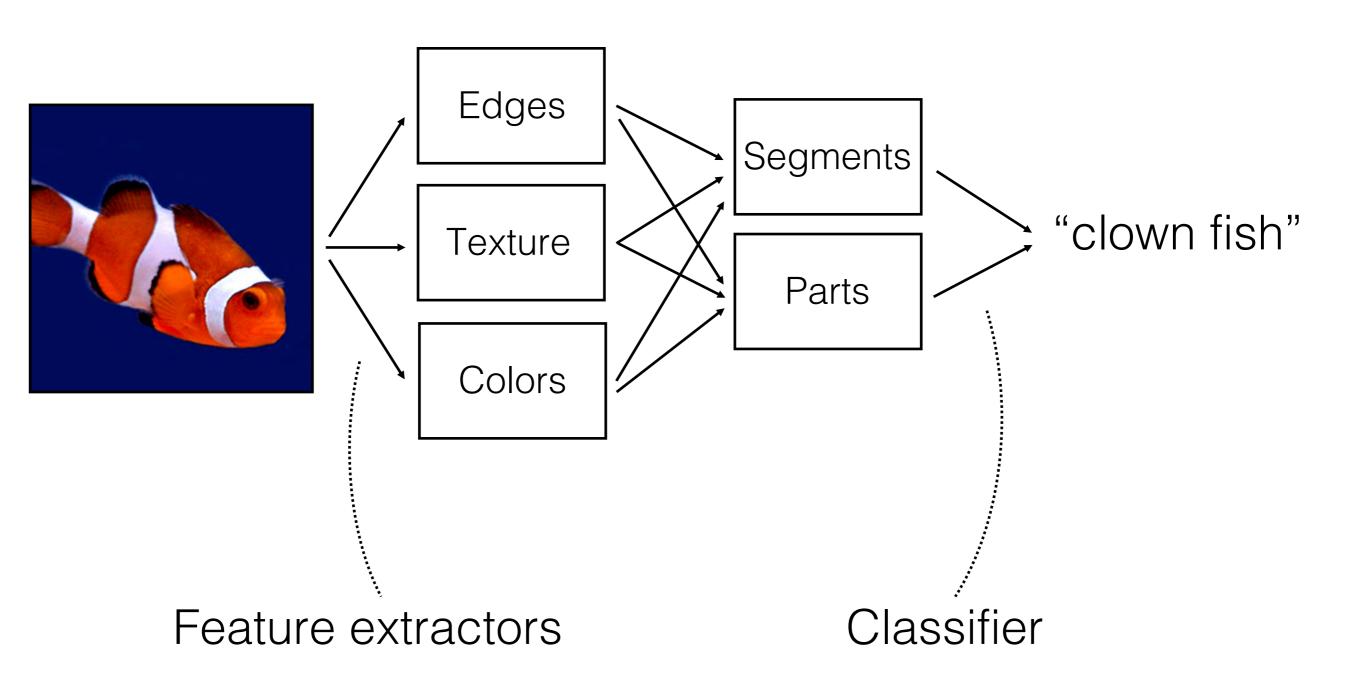
Linear classifier rule



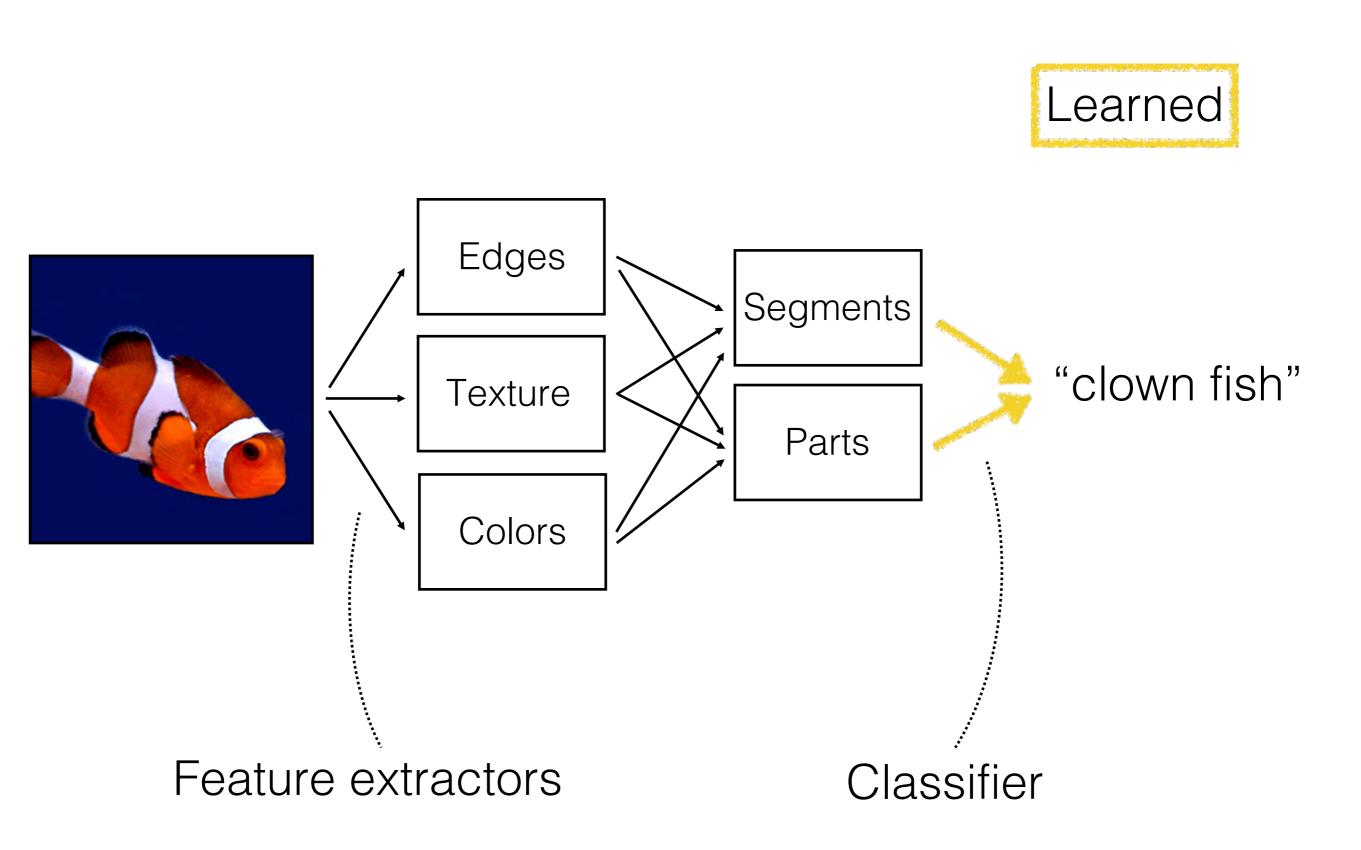
Basic idea



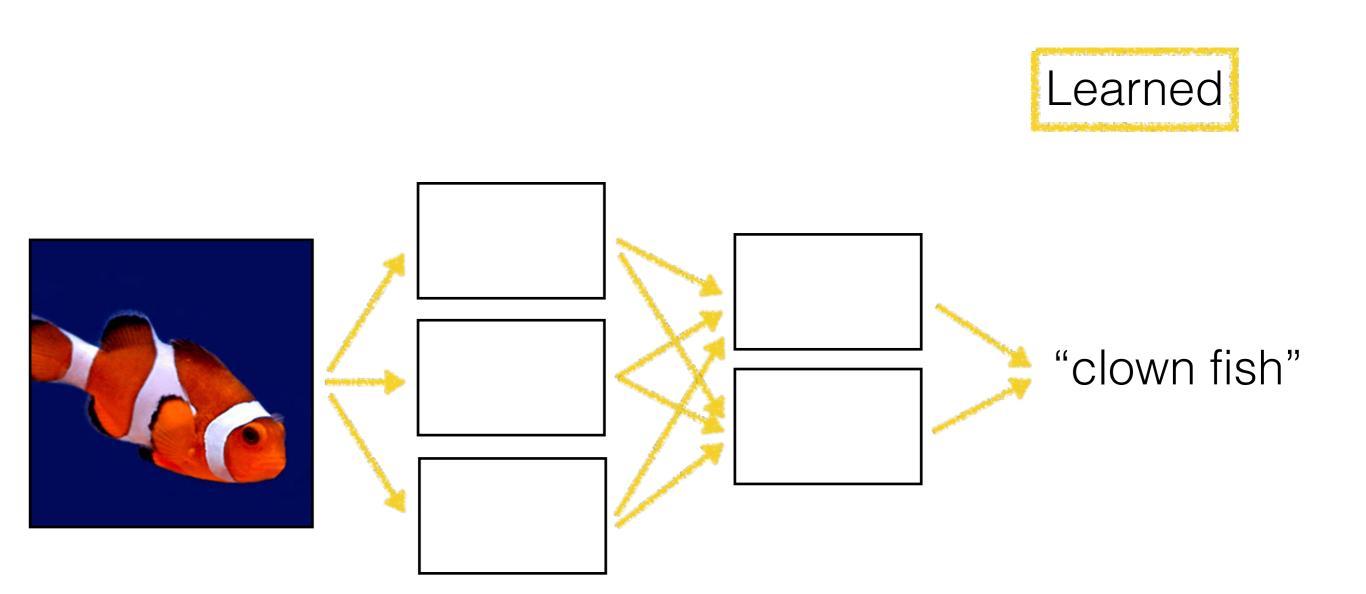
Object recognition



Object recognition

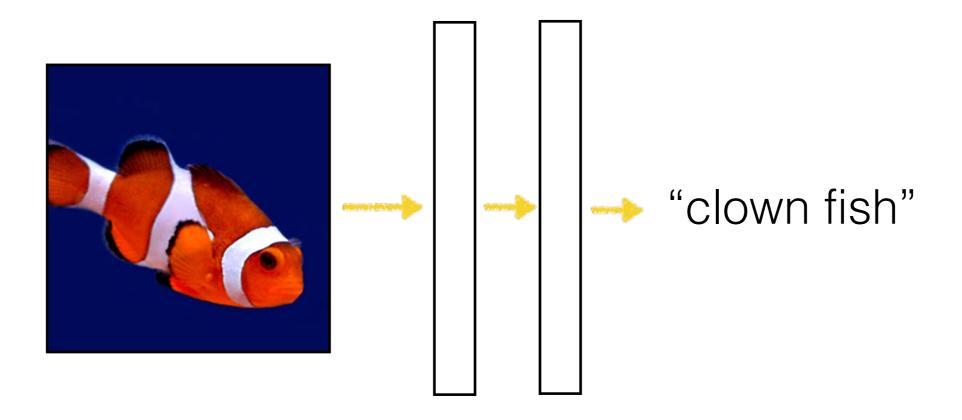


Neural network

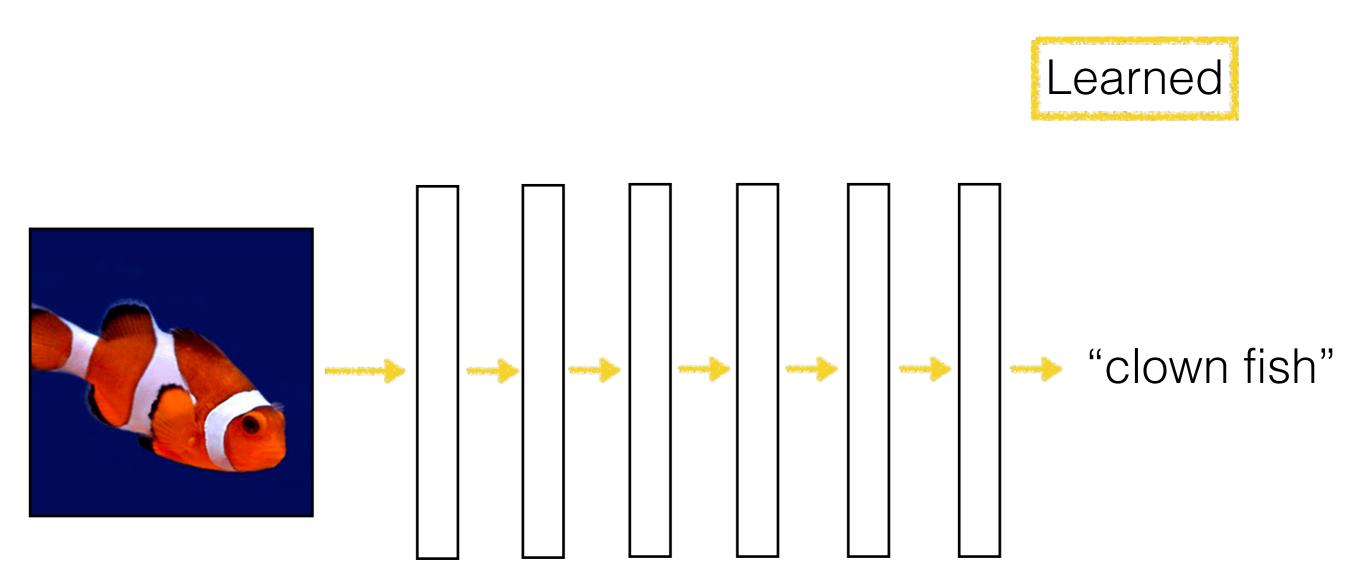


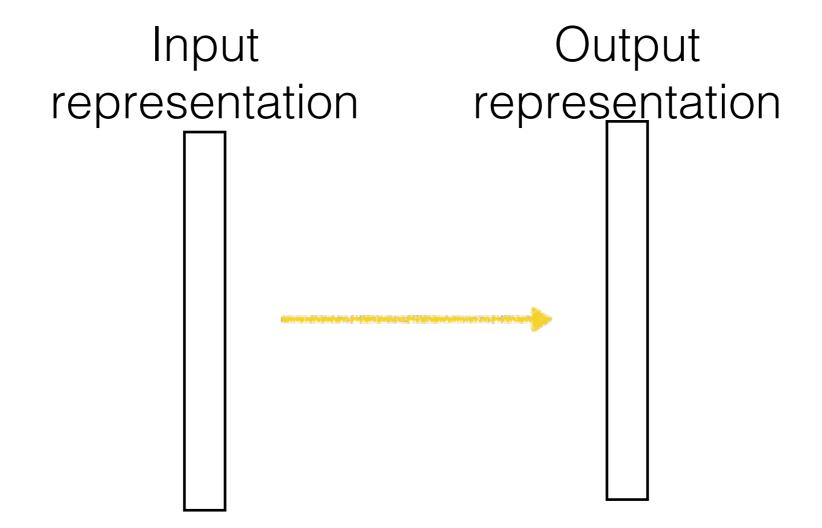
Neural network

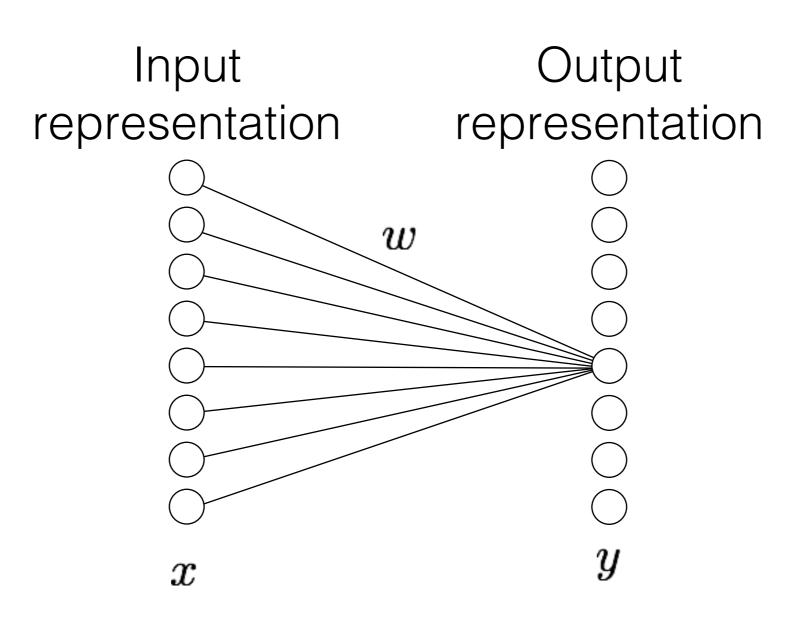
Learned



Deep neural network

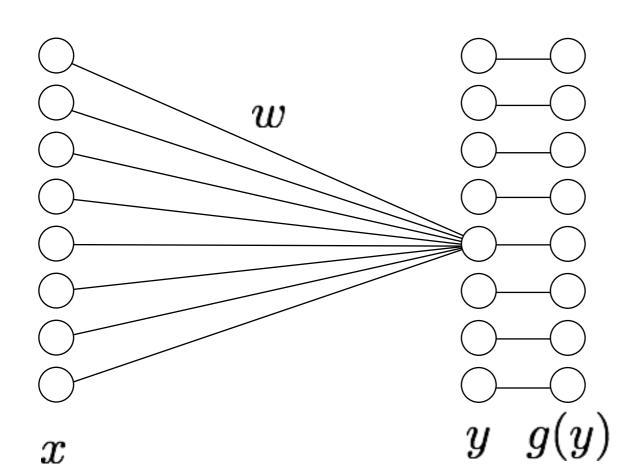




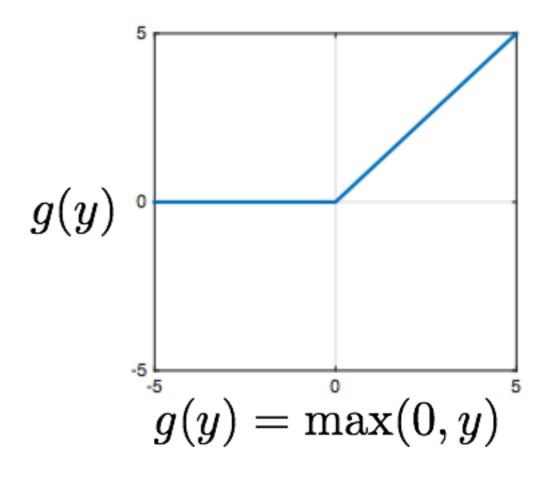


$$y_j = \sum_i w_{ij} x_i$$

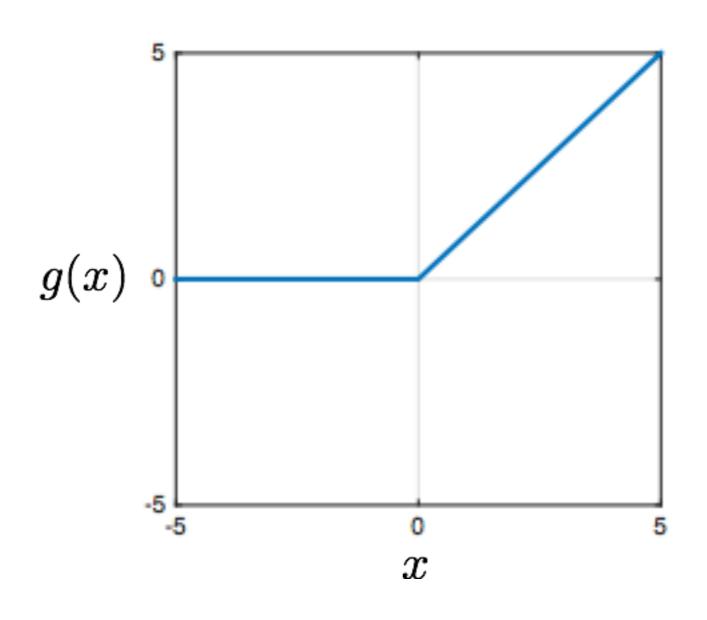
i: the i^{th} dimension of x_3 , j; the j^{th} dimension of y



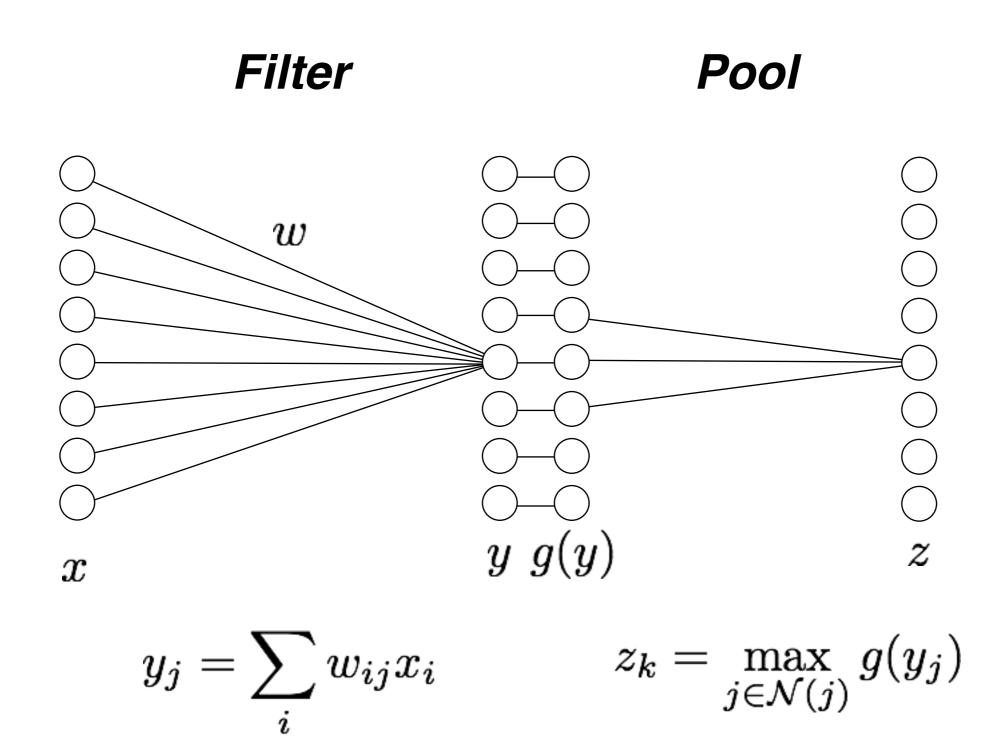
Rectified linear unit (ReLU)



Rectified linear unit (ReLU)

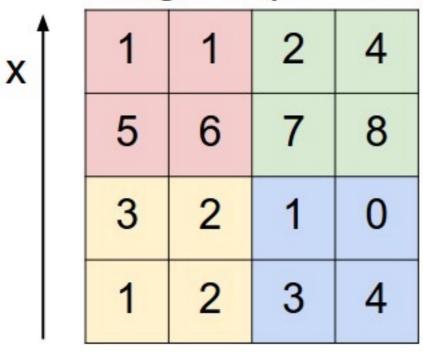


$$g(x) = \max(0, x)$$

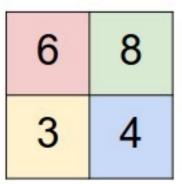


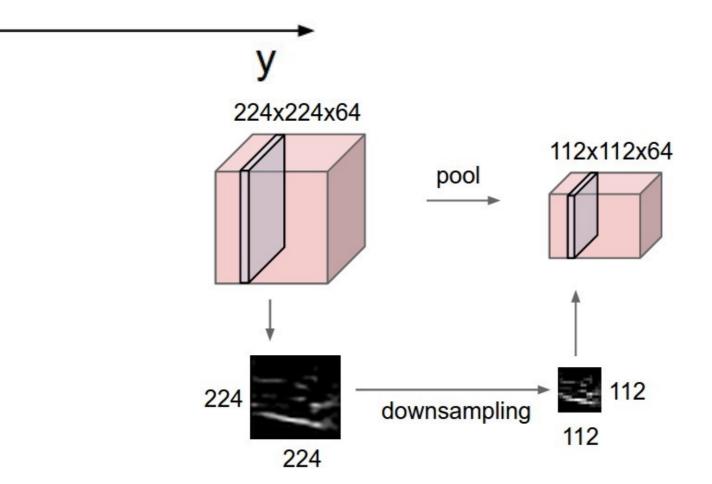
i: the i^{th} dimension of x_0 j; the j^{th} dimension of y

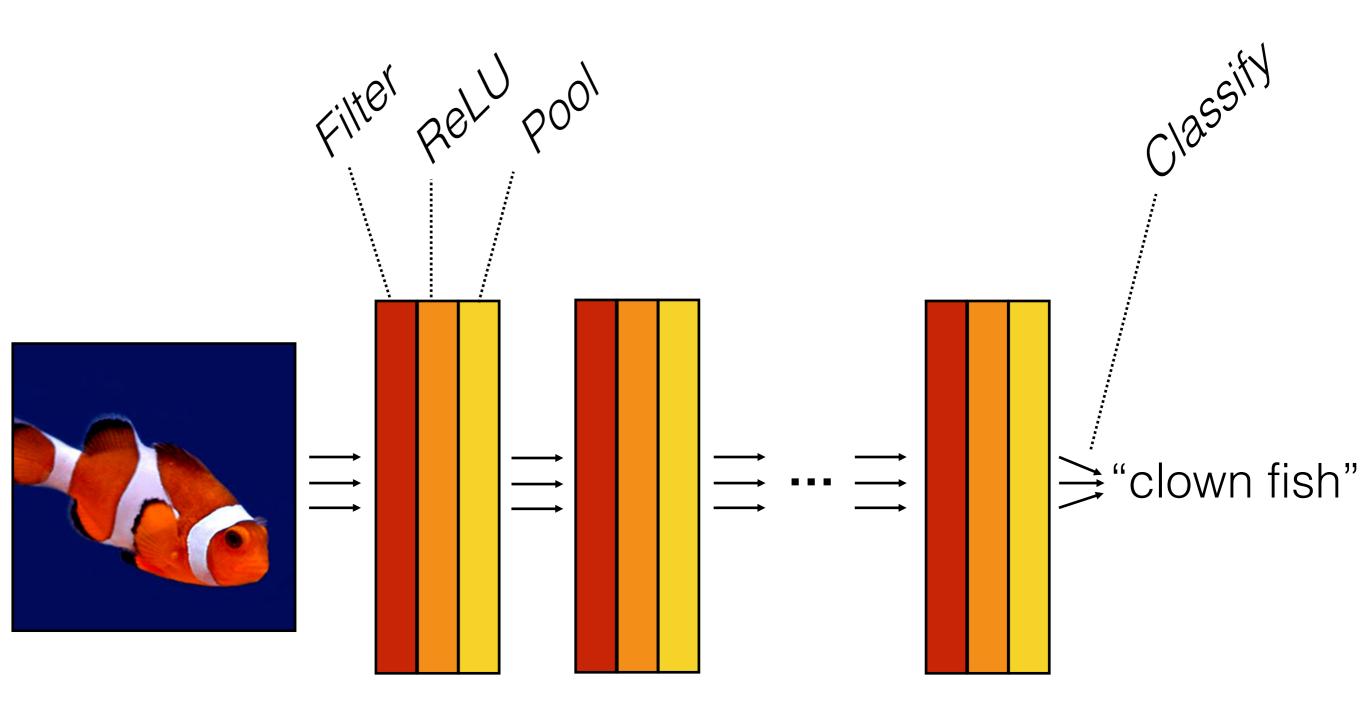
Single depth slice



max pool with 2x2 filters and stride 2

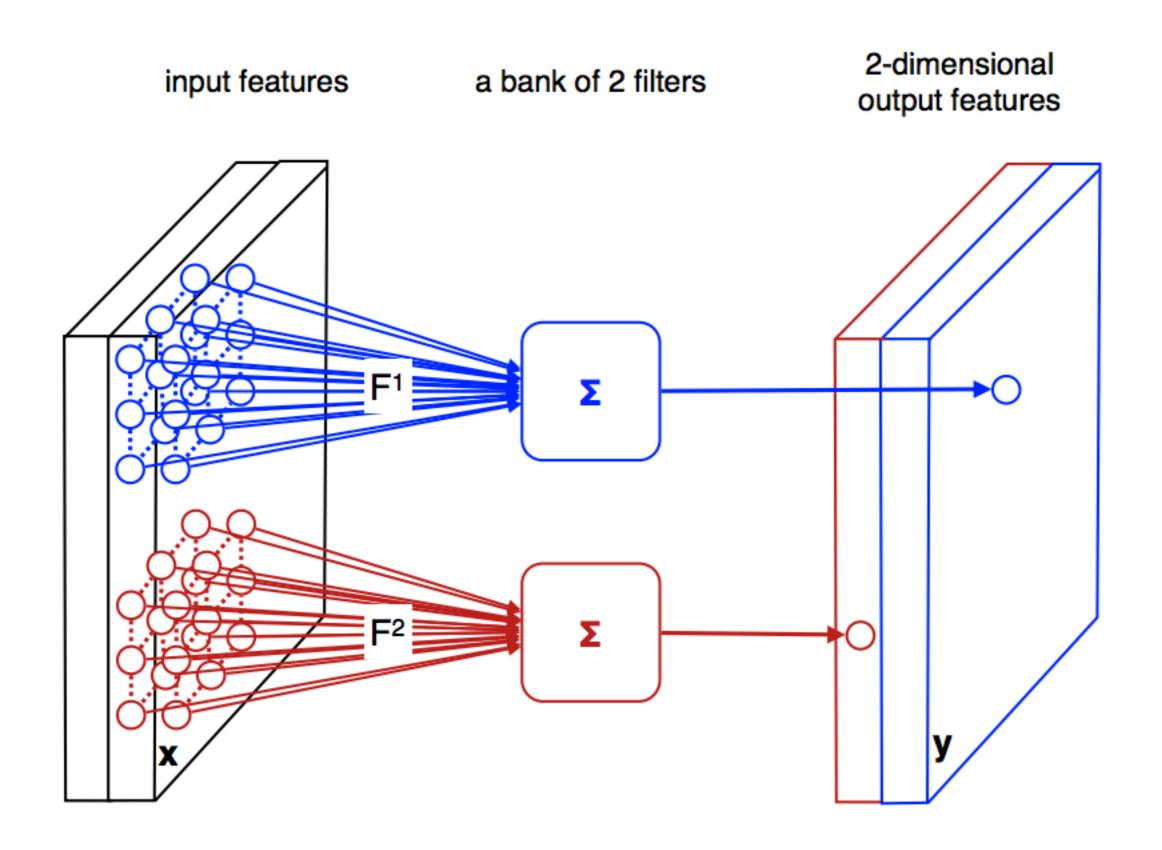






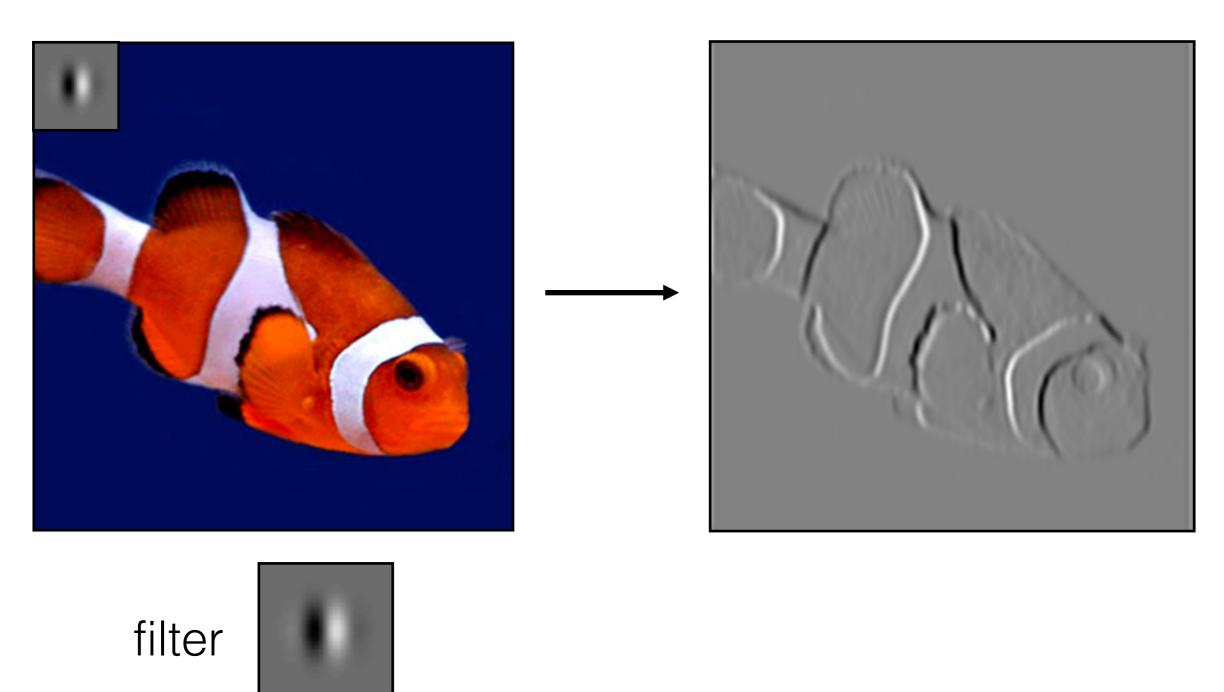
$$f(\mathbf{x}) = f_L(\dots f_2(f_1(\mathbf{x})))$$

Convolutional Neural Nets

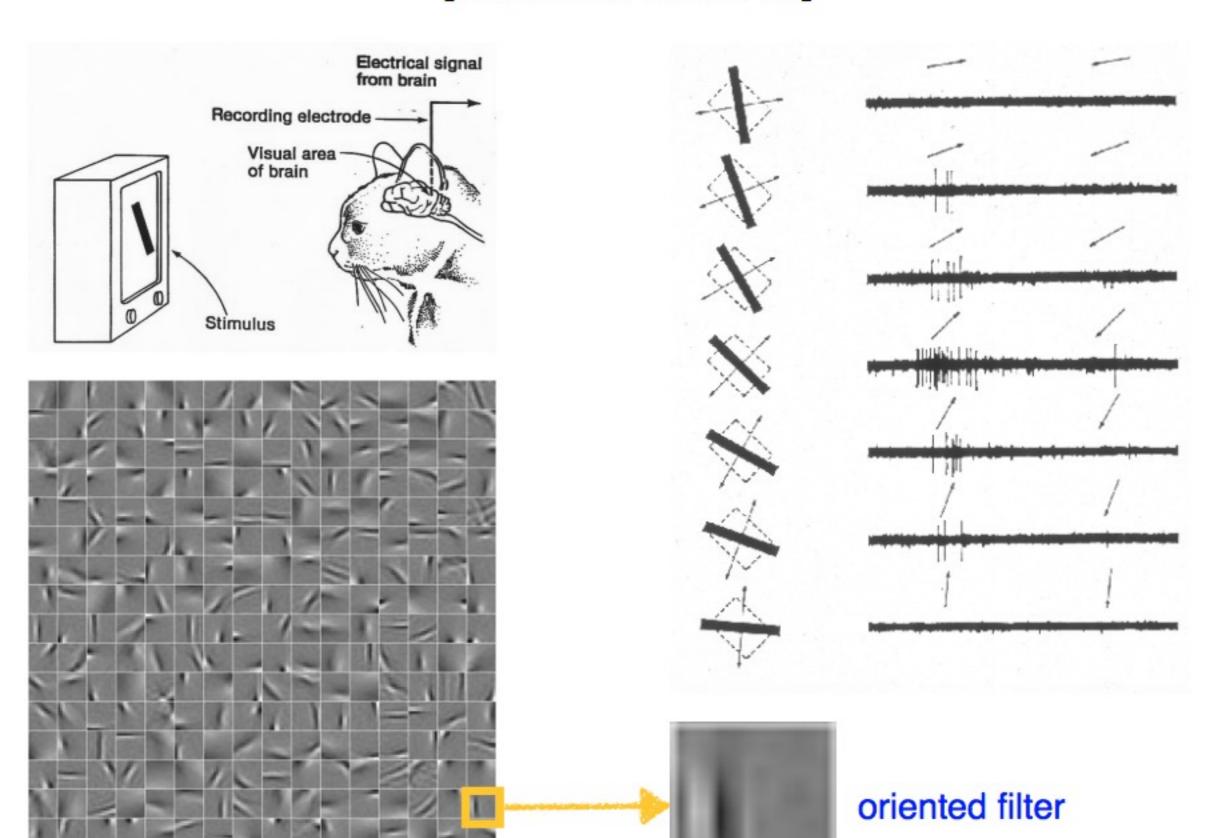


Convolutional Neural Nets

Convolution

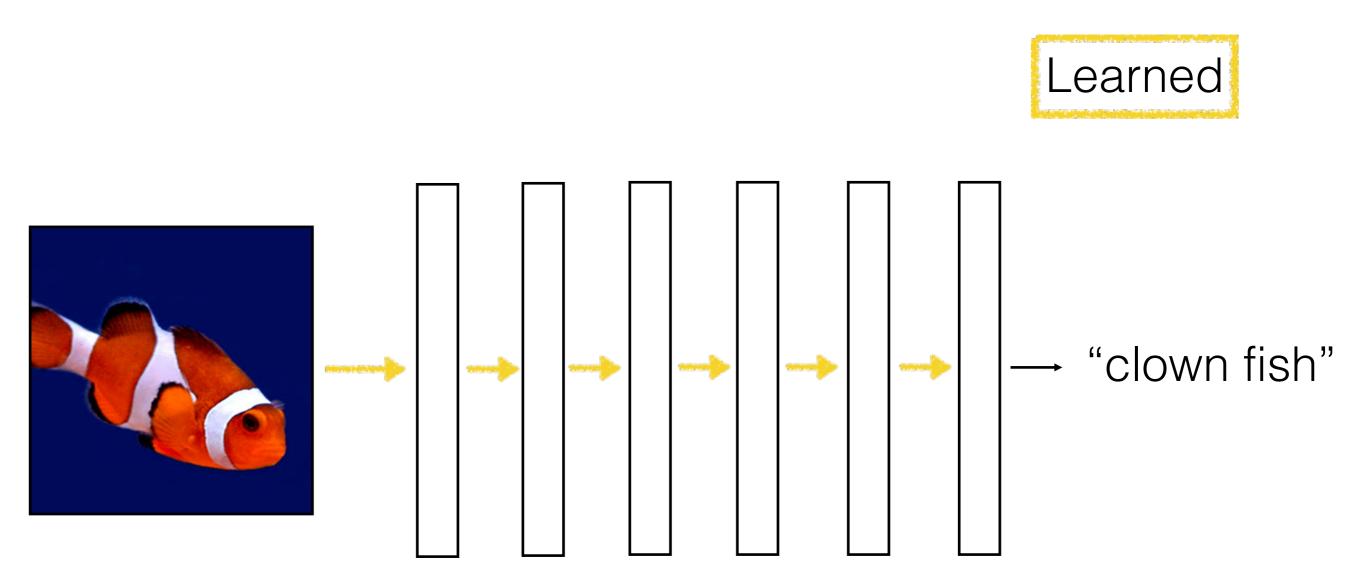


[Hubel and Wiesel 59]



Slide from Andrea Vedaldi

Learning with deep nets



Learning with deep nets

— "clown fish"

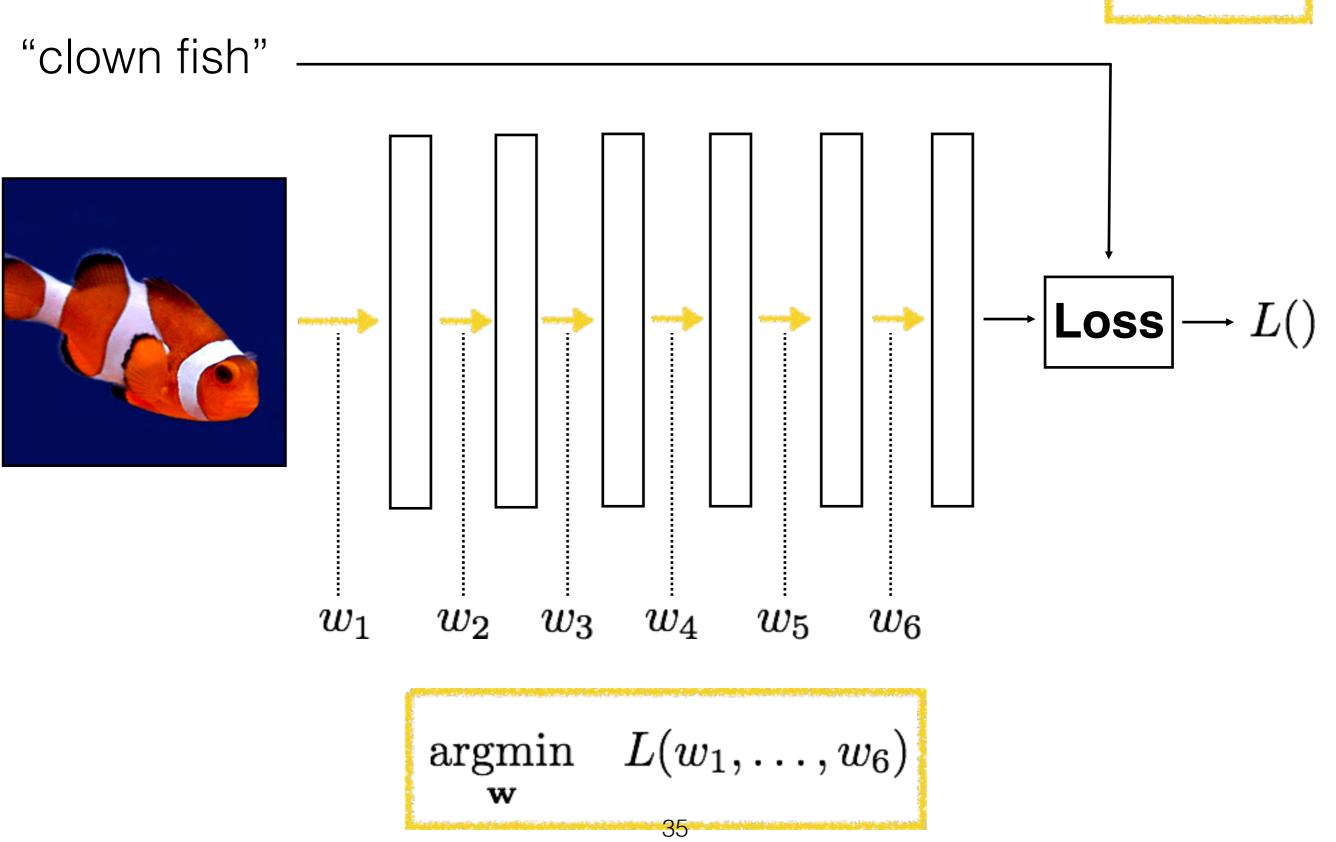
→ "grizzly bear"

Train network to associate the right label with each image

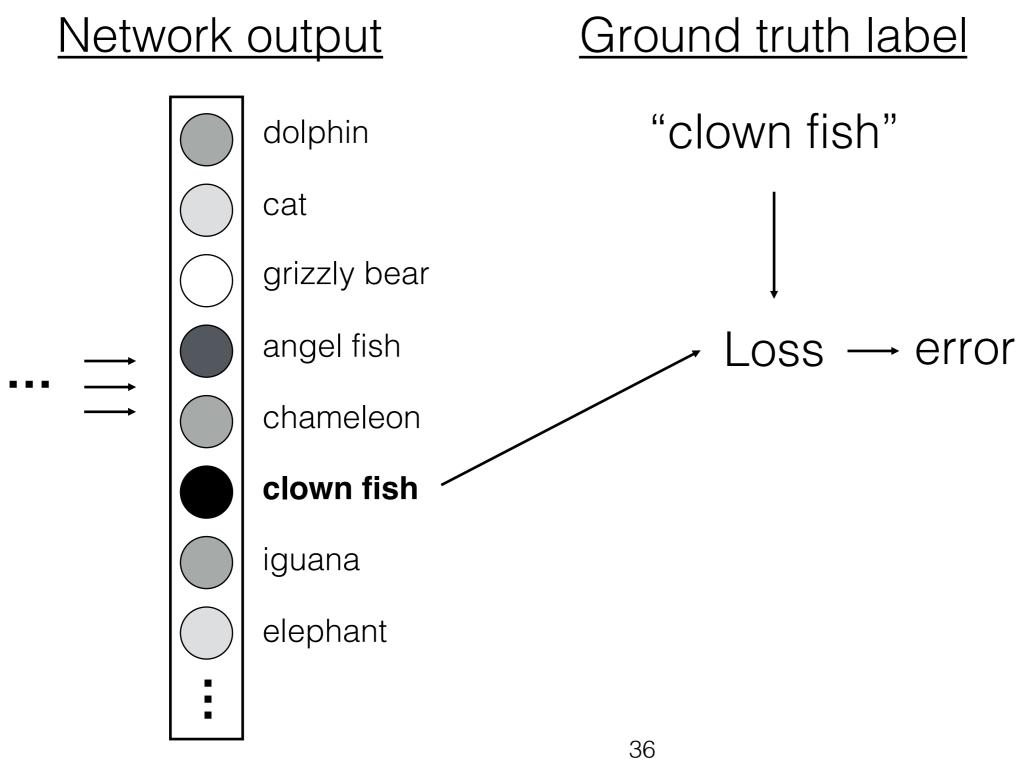
→ "chameleon"

Learning with deep nets

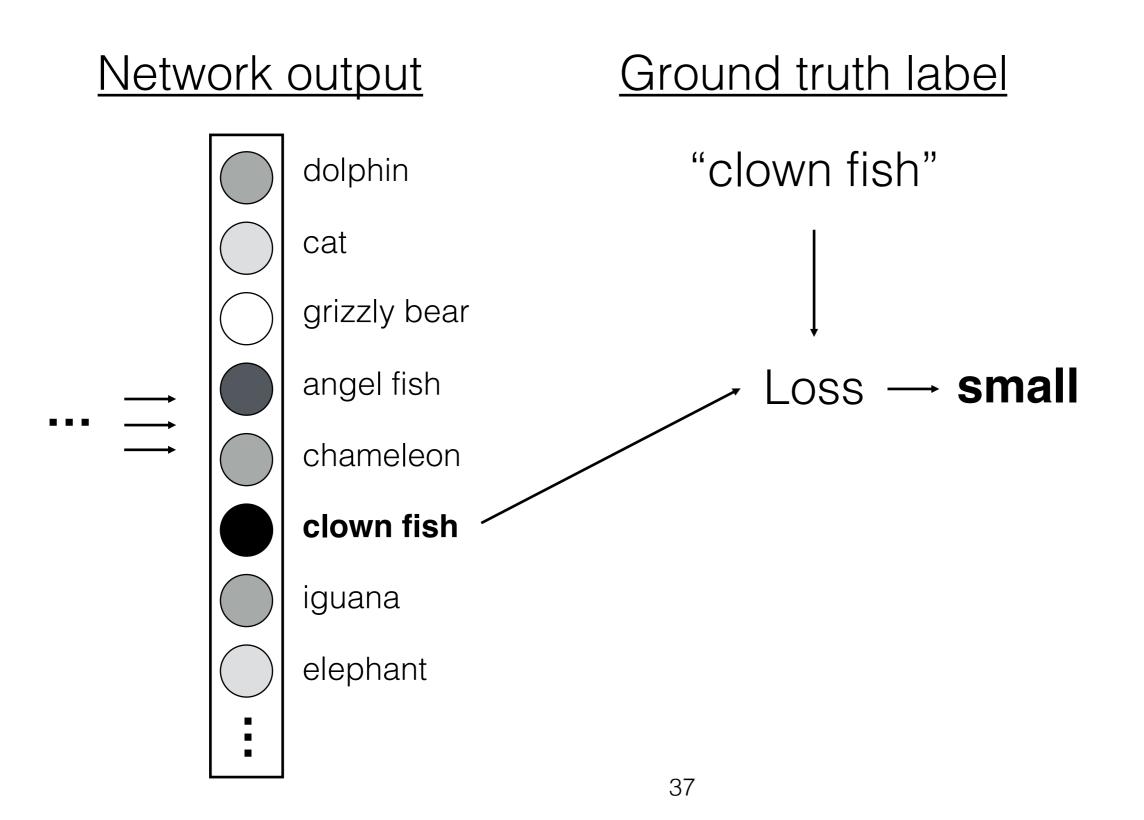
Learned



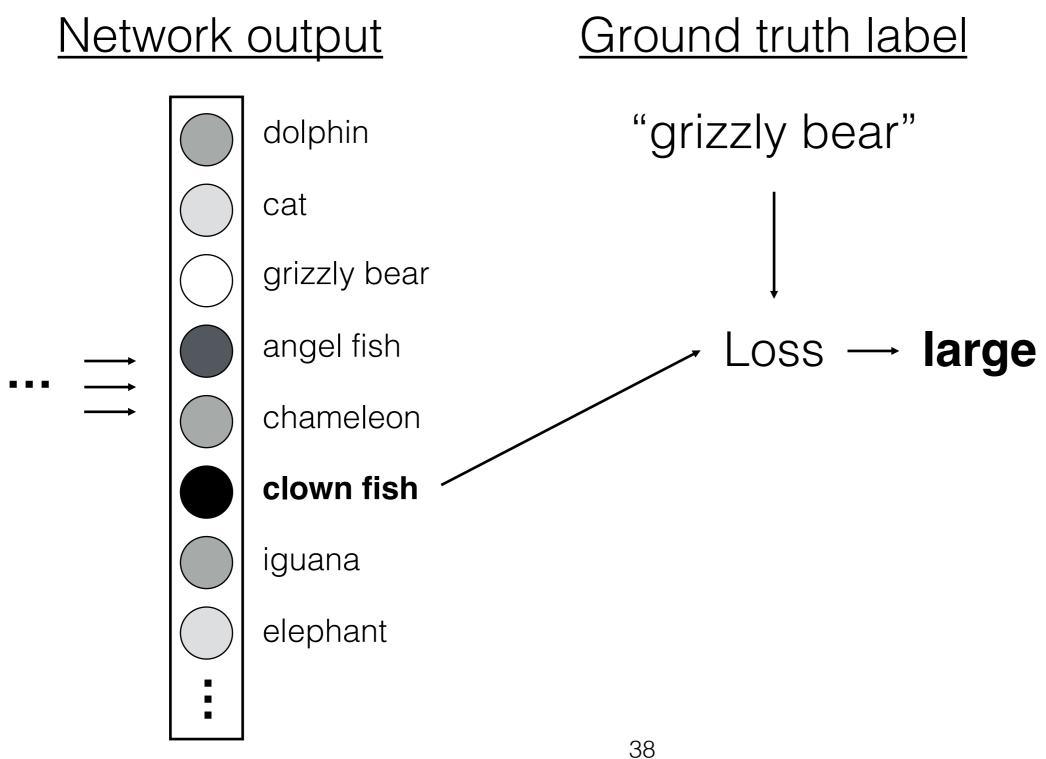
Loss function



Loss function

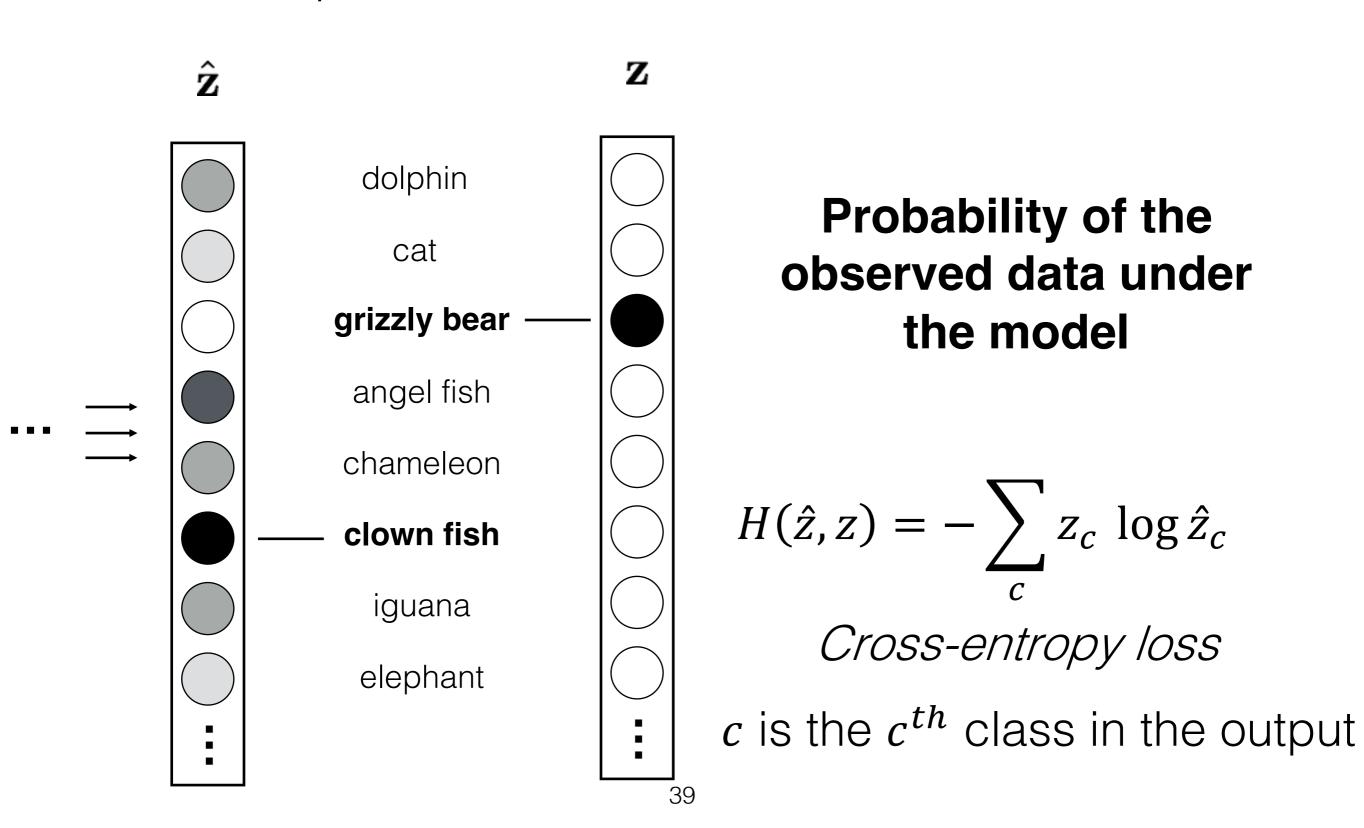


Loss function

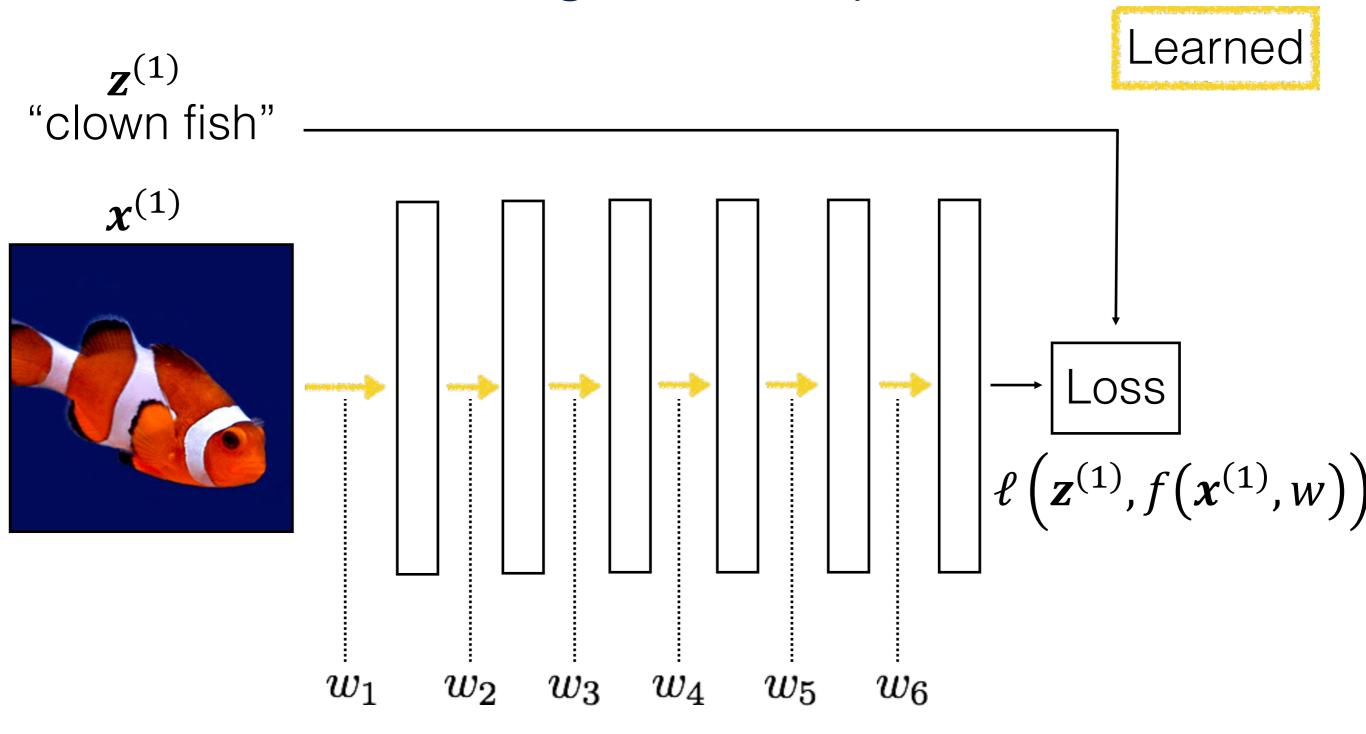


Loss function for classification

Network output Ground truth label

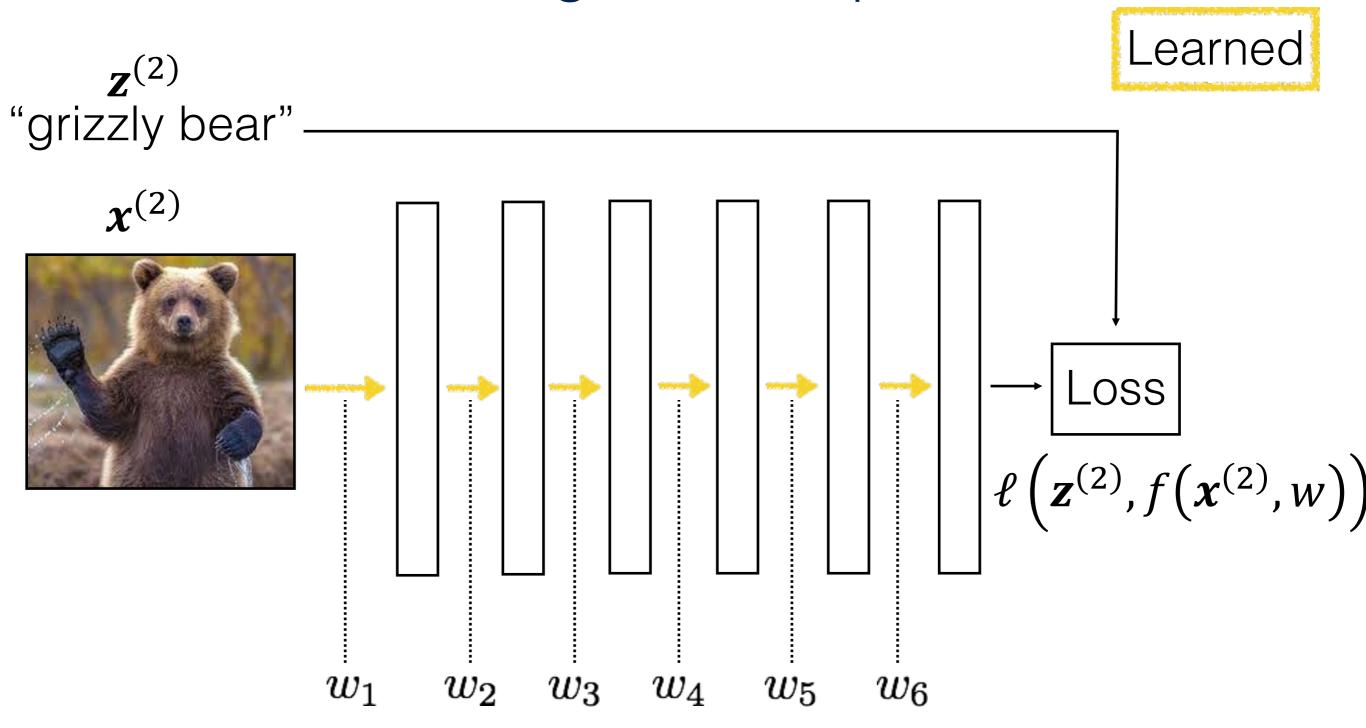


Learning with deep nets



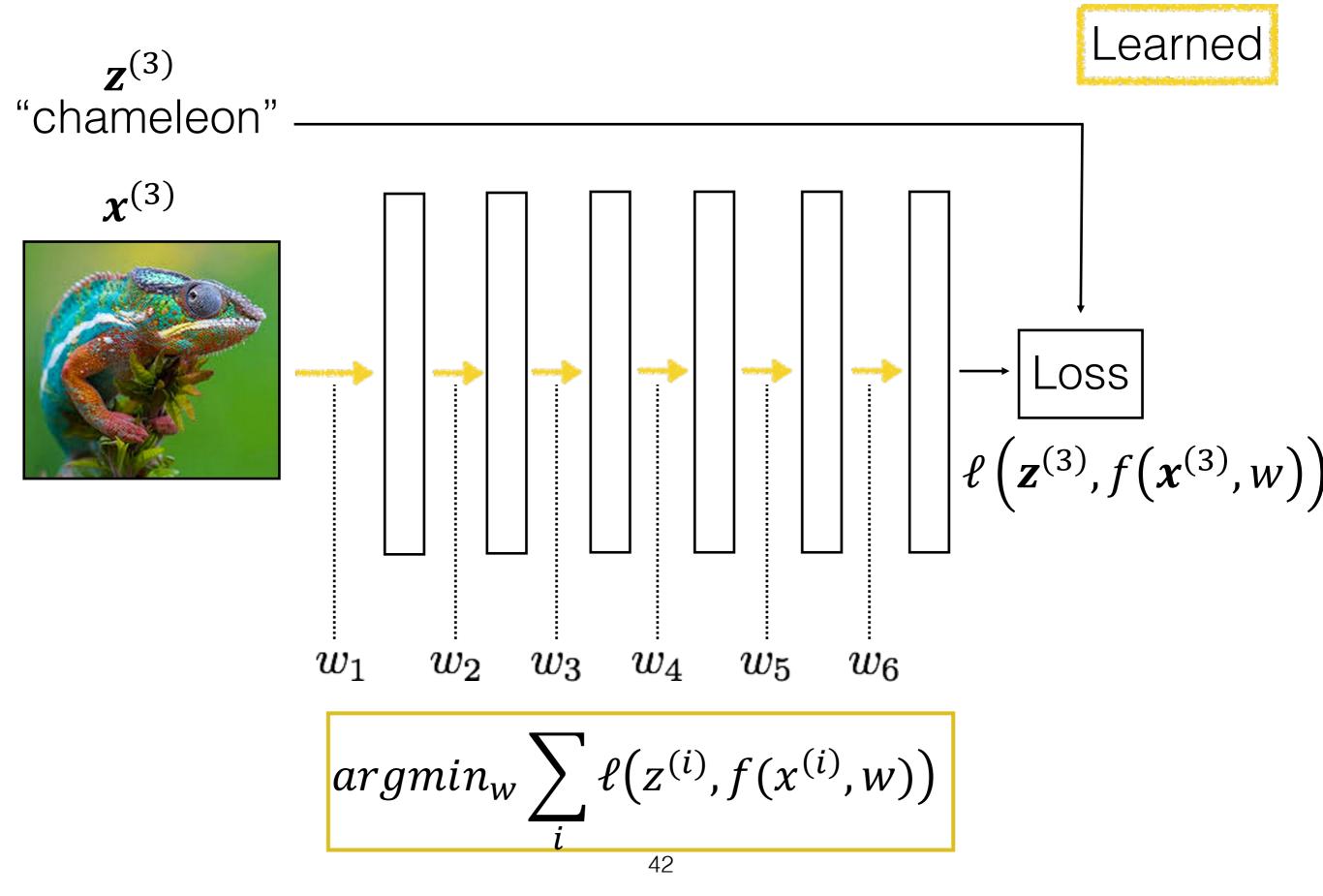
 $\mathbf{x}^{(1)}$, $\mathbf{z}^{(1)}$ is the input and label of the 1st training image

Learning with deep nets



 $\mathbf{x}^{(2)}$, $\mathbf{z}^{(2)}$ is the input and label of the 2nd training image

Learning with deep nets



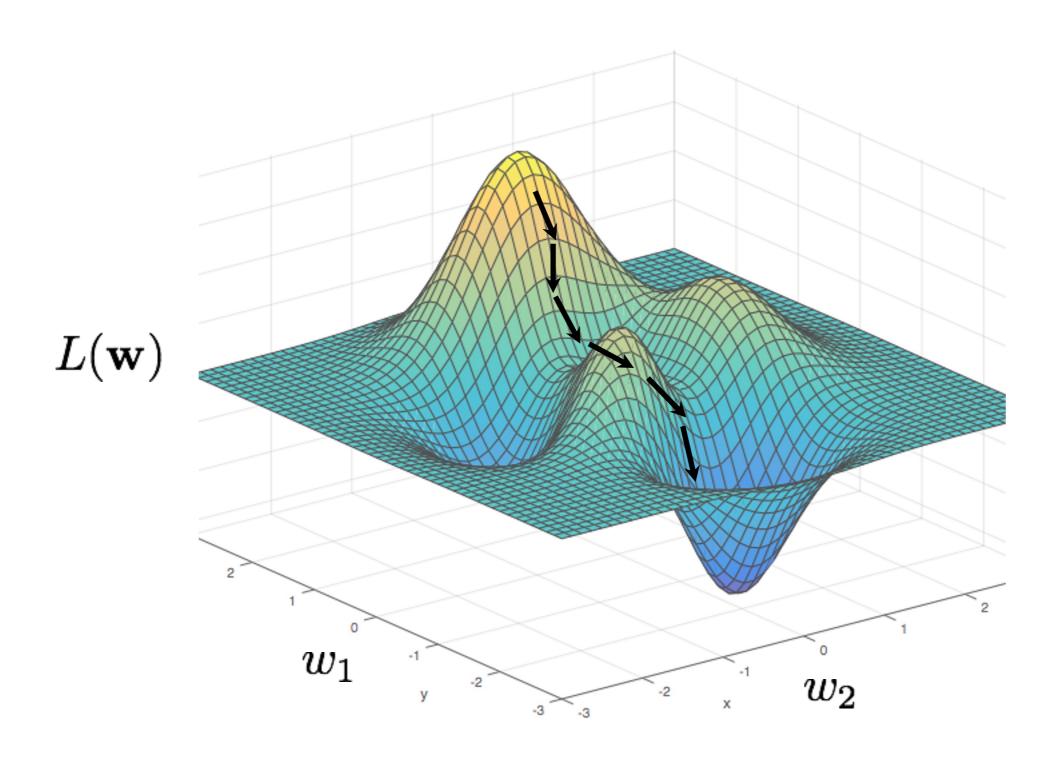
Gradient descent

$$argmin_{w} \sum_{i} \ell(z^{(i)}, f(x^{(i)}, w)) = argmin_{w} L(w)$$

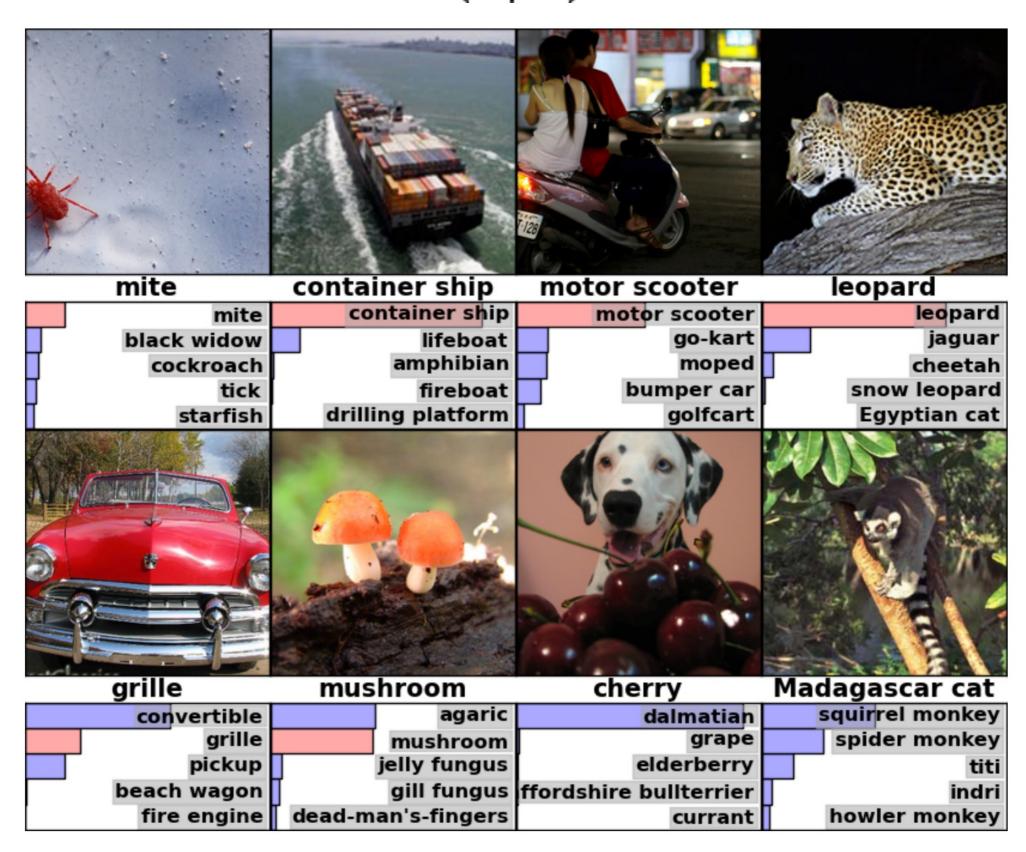
One iteration of gradient descent:

$$\mathbf{w}^{t+1} = \mathbf{w}^t - \eta_t \frac{\partial L(\mathbf{w^t})}{\partial \mathbf{w}}$$
 learning rate

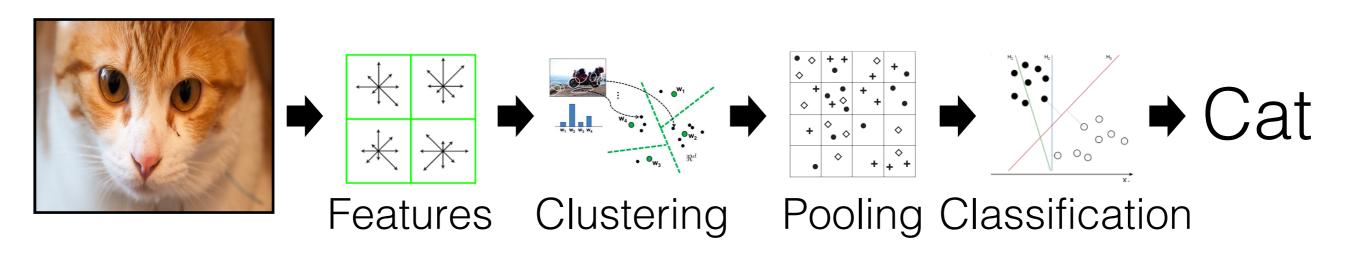
Gradient descent



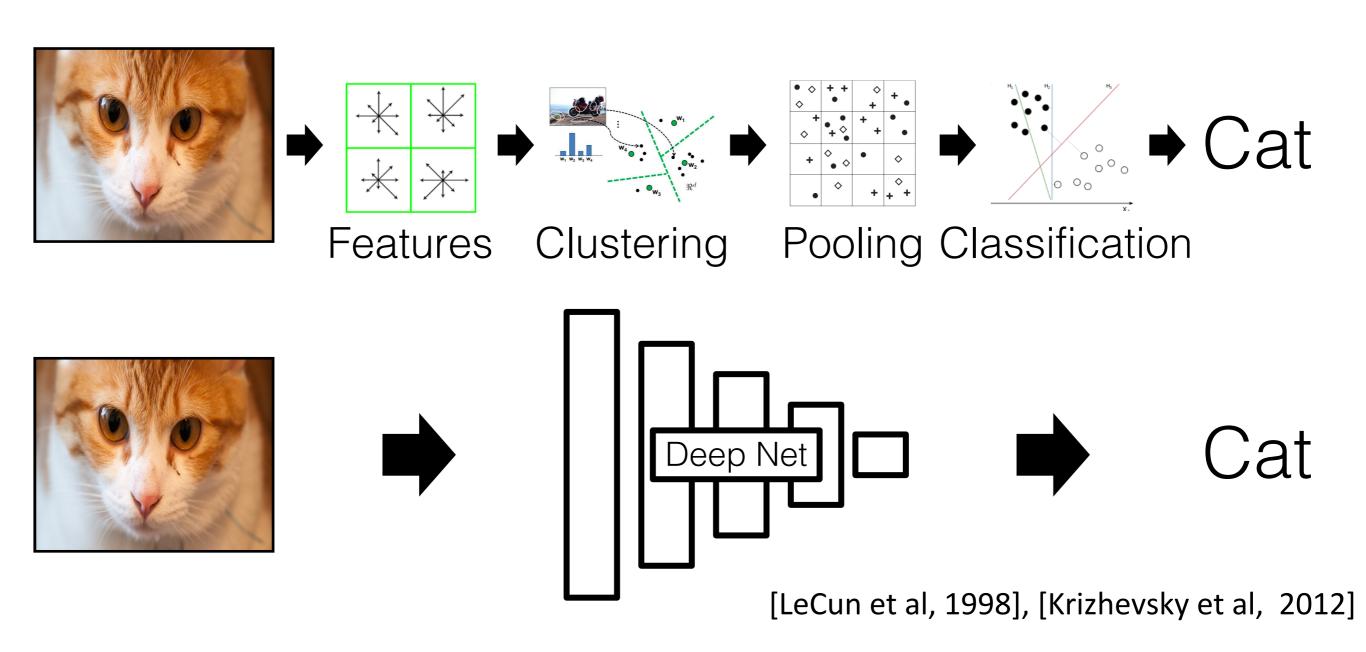
$p(c|\mathbf{x})$



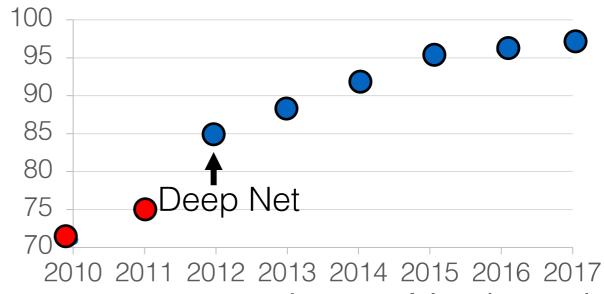
Computer Vision before 2012



Computer Vision Now

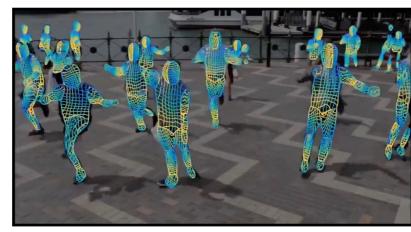


Deep Learning for Computer Vision



Top 5 accuracy on ImageNet benchmark

[Redmon et al., 2018] **Object detection**



[Güler et al., 2018]

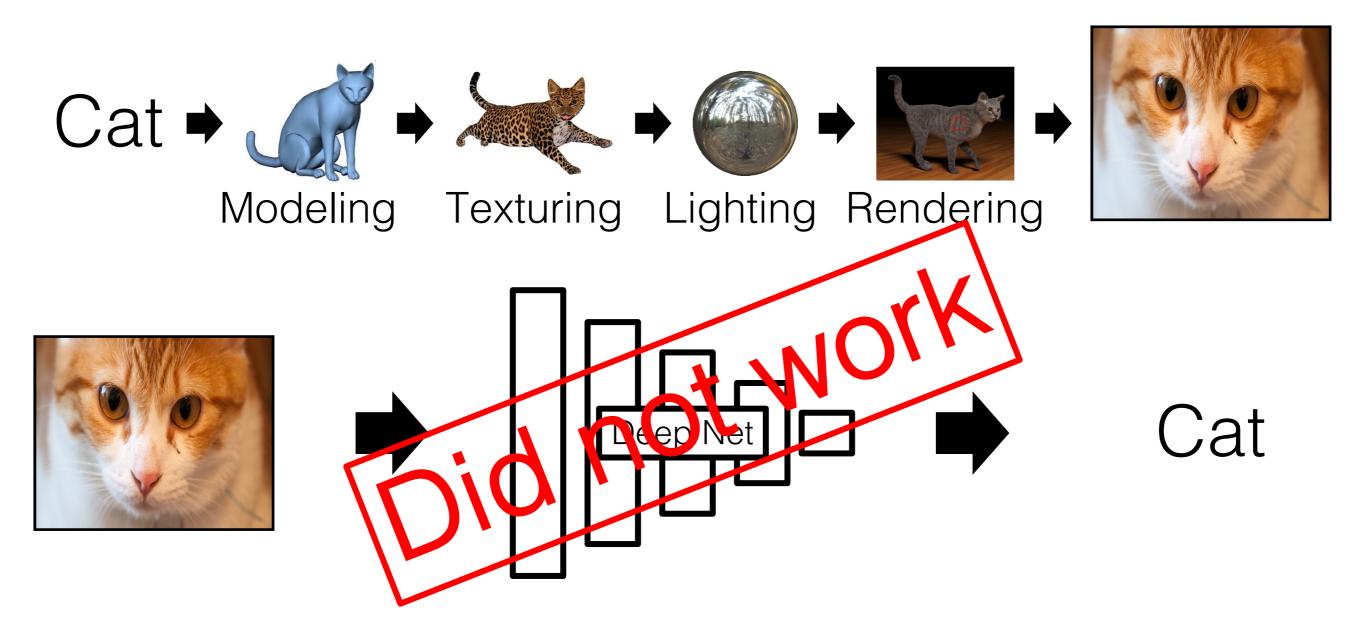
Human understanding

[Zhao et al., 2017]

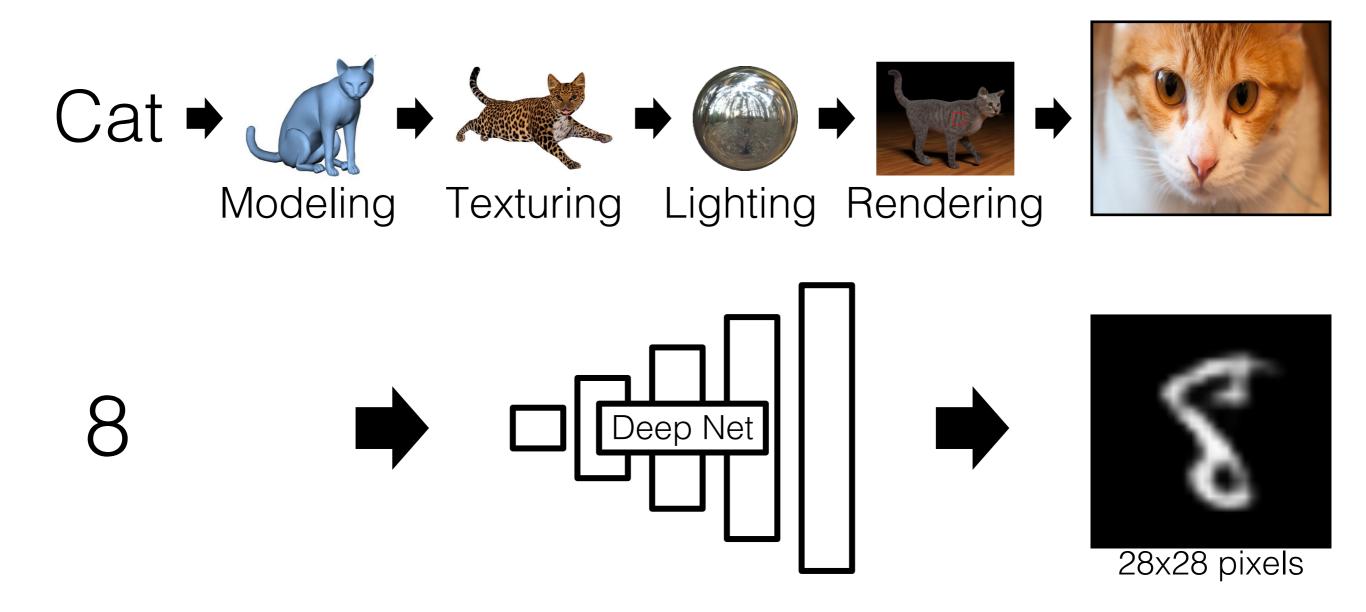
Autonomous driving

Can Deep Learning Help Graphics?

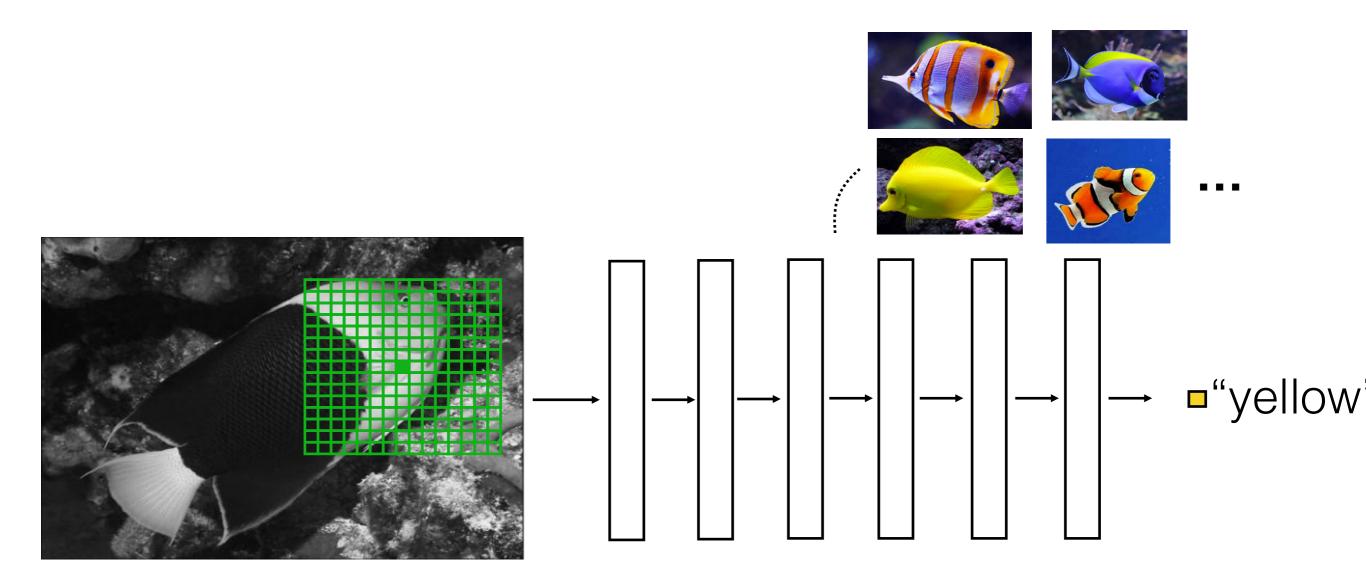
Can Deep Learning Help Graphics?



Generating images is hard!

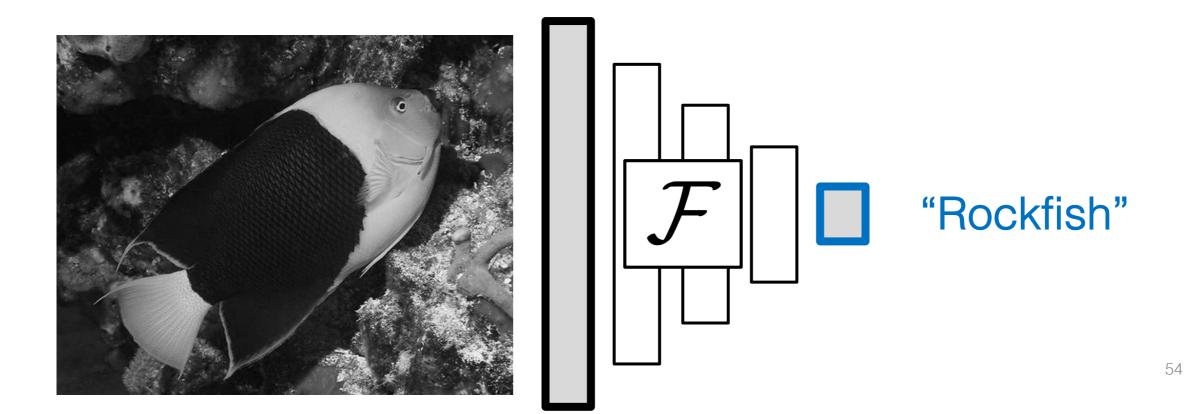


from Classification to Generation

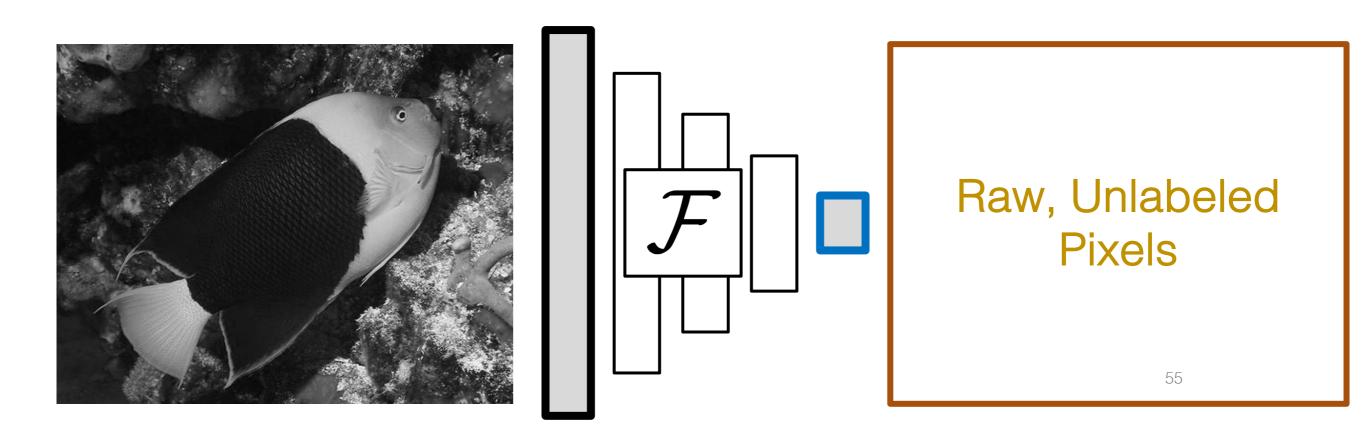


Predicting the color value of an output pixel given a patch

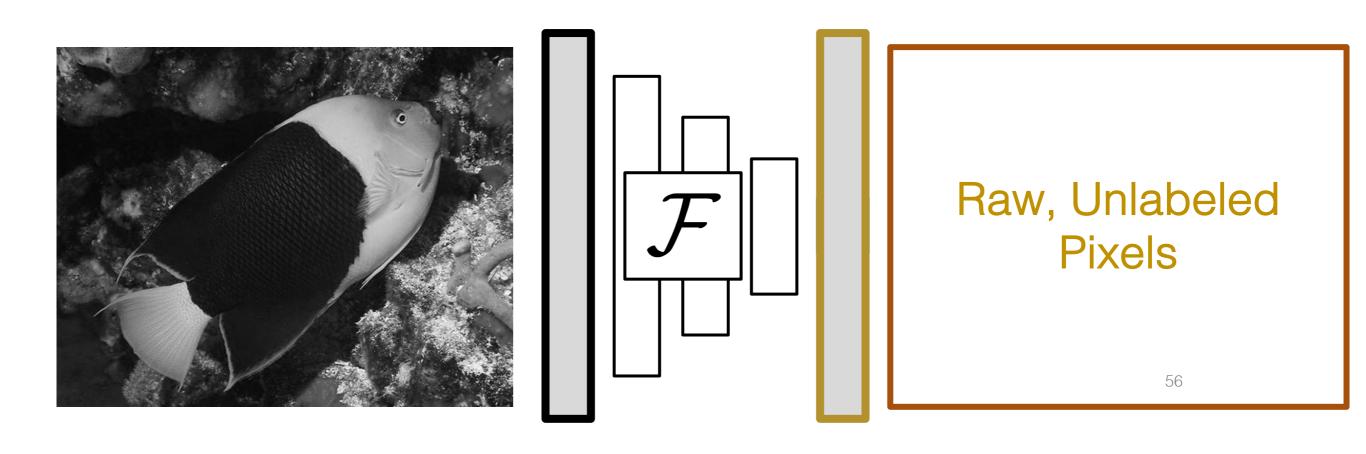
Discriminative Deep Networks



Discriminative Deep Networks

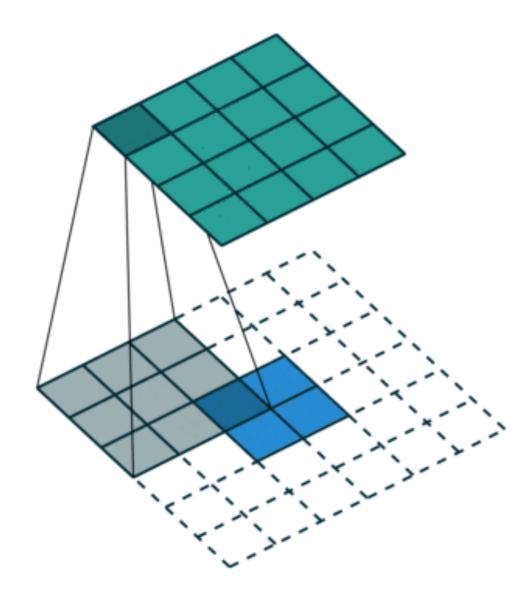


Generative Deep Networks

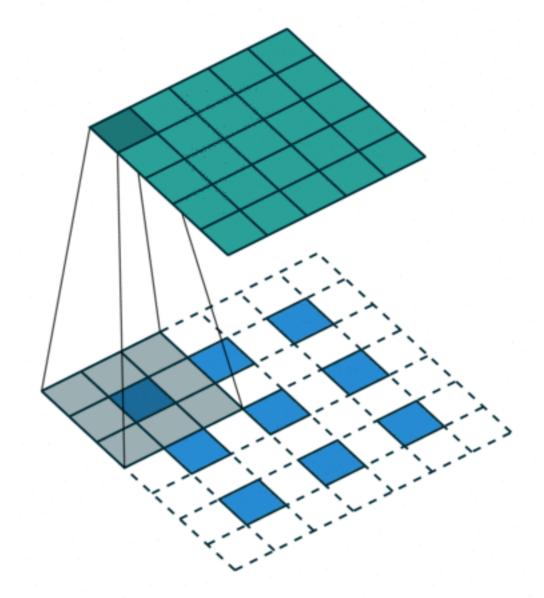


Better Architectures

Fractionally-strided Convolution

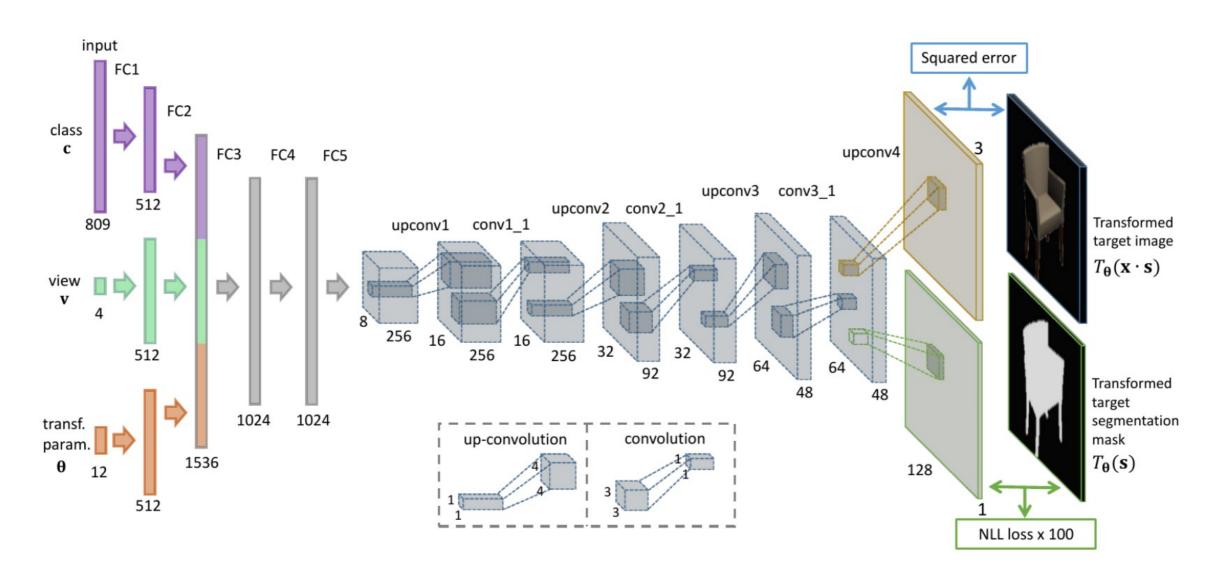


Regular conv



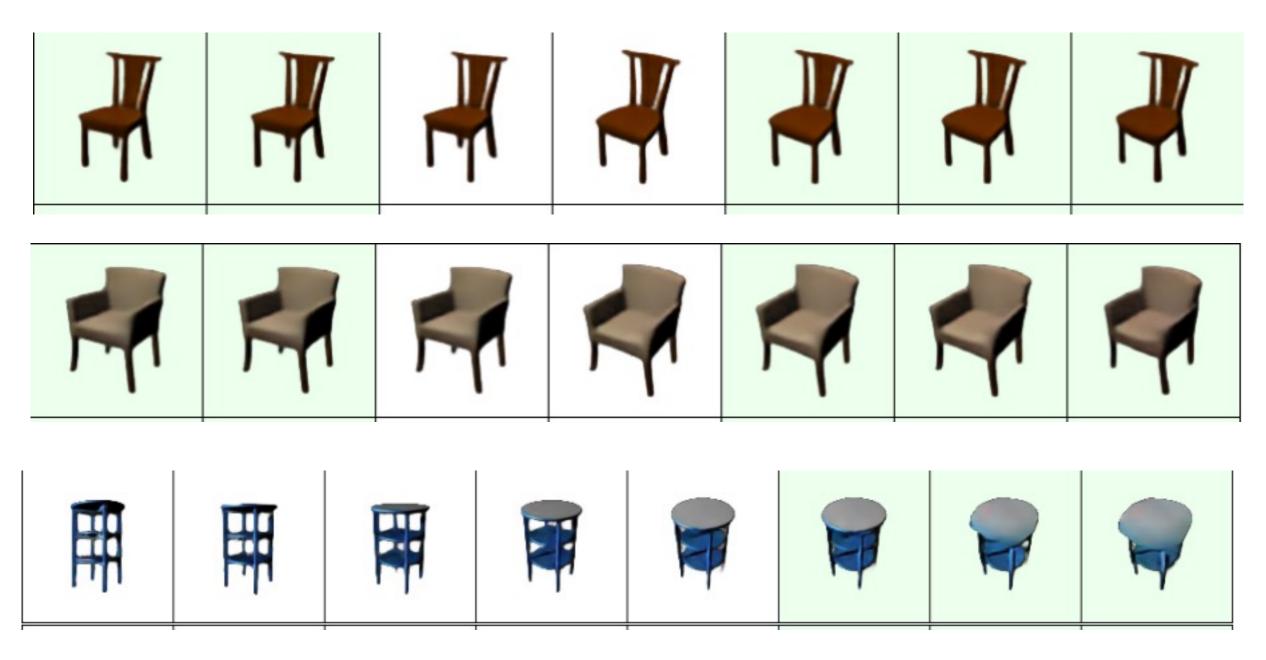
Fractiaionally-strided conv

Generating chairs conditional on chair ID, viewpoint, and transformation parameters



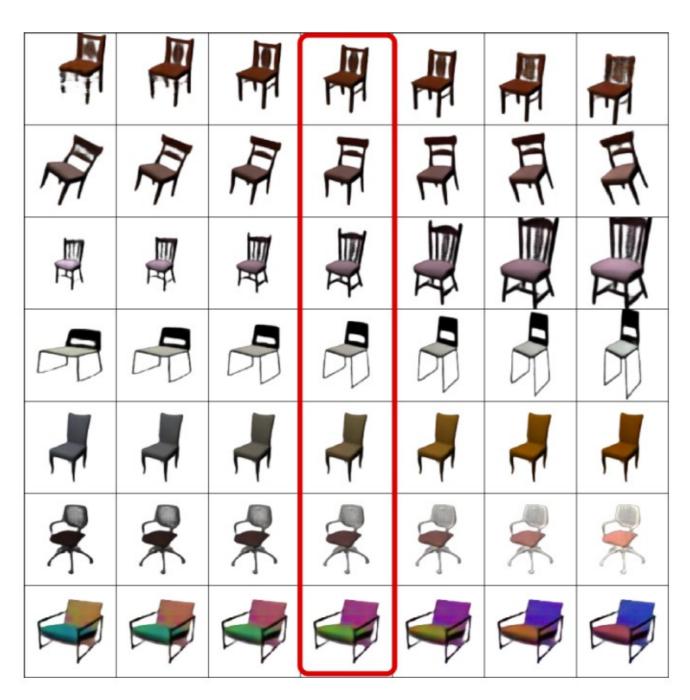
Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017 (CVPR 2015)

With Varying Viewpoints



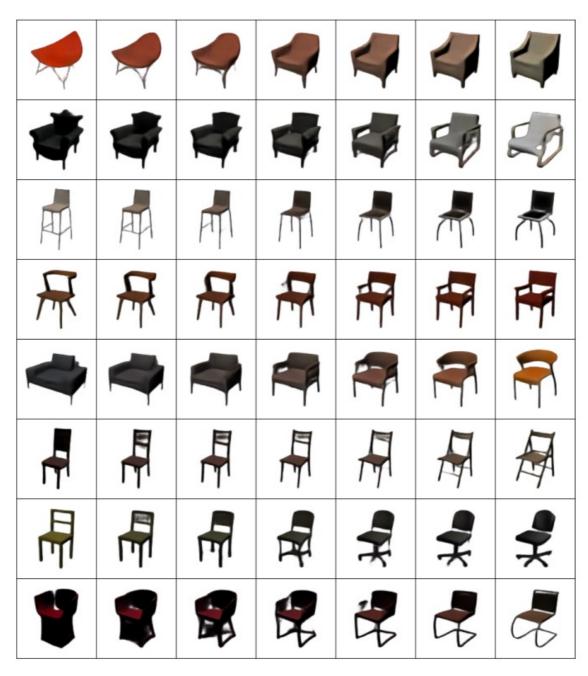
Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017 (CVPR 2015)

With Varying Transformation Parameters



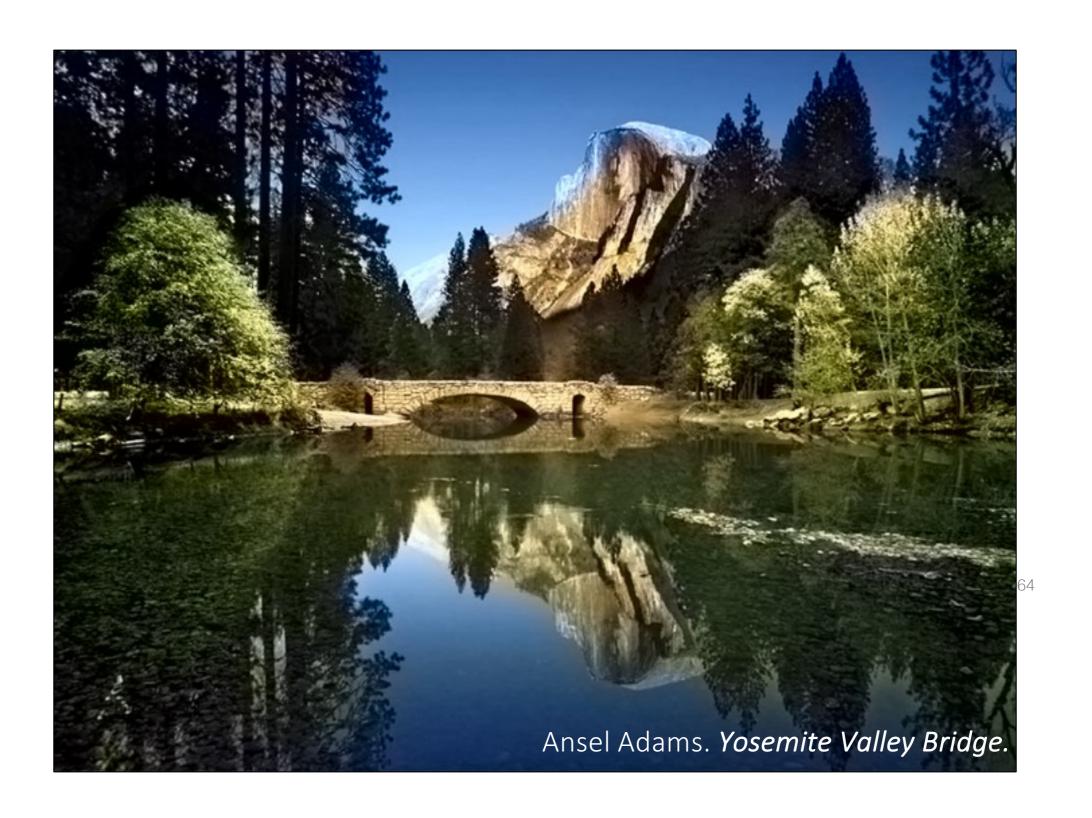
Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017₆₁(CVPR 2015)

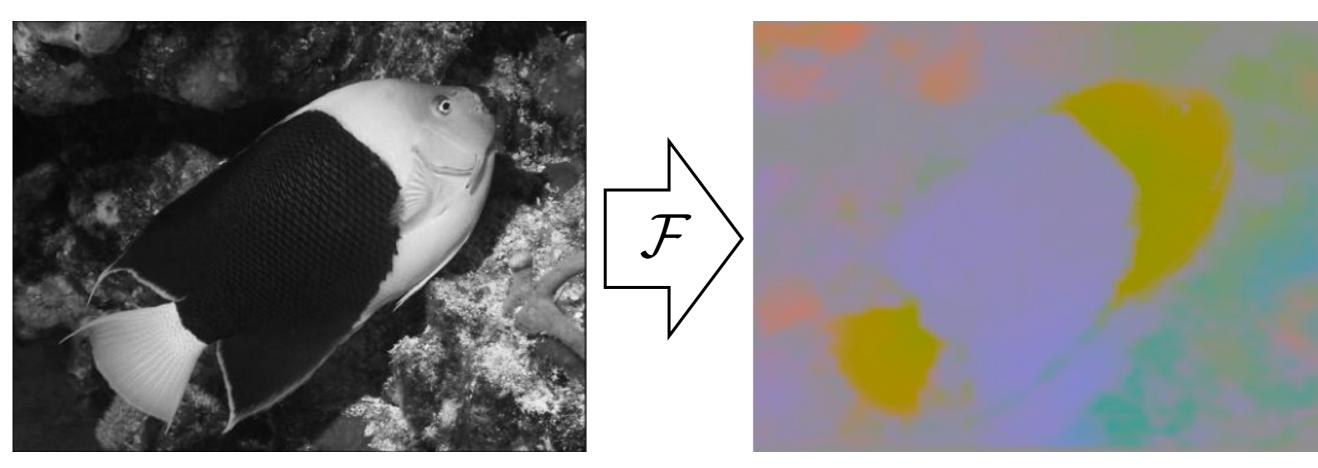
Interpolation between Two Chairs



Dosovitskiy et al. Learning to Generate Chairs, Tables and Cars with Convolutional Networks PAMI 2017, (CVPR 2015)

Better Loss Functions

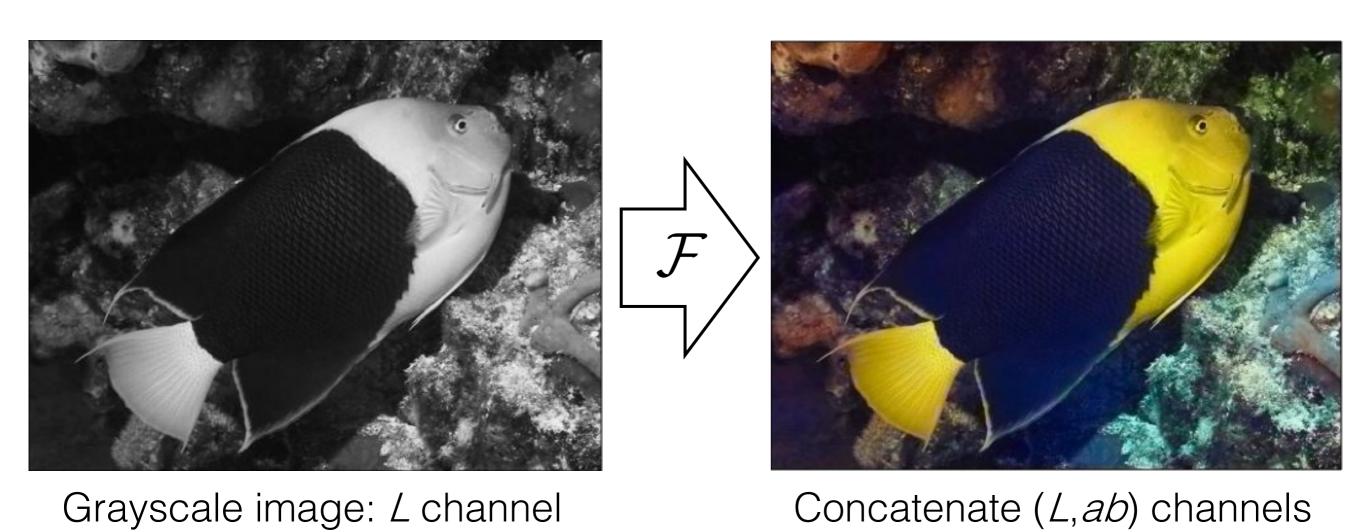




Grayscale image: L channel

Color information: ab channels $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$ $\hat{\mathbf{Y}} \in \mathbb{R}^{H \times W \stackrel{\text{\tiny 65}}{ imes} 2}$ ab

Zhang, Isola, Efros. Colorful Image Colorization. In ECCV, 2016.



 $\mathbf{X} \in \mathbb{R}^{H \times W \times 1}$ $(\mathbf{X}, \widehat{\mathbf{Y}})$

Zhang, Isola, Efros. Colorful Image Colorization. In ECCV, 2016.

Simple L2 regression doesn't work ®

Input

Output

Ground truth

$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$

$$L_{2}(\widehat{\mathbf{Y}},\mathbf{Y}) = \frac{1}{2} \sum_{h,w} \|\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}\|_{2}^{2}$$

Better Loss Function

$$\theta^* = \arg\min_{\theta} \ell(\mathcal{F}_{\theta}(\mathbf{X}), \mathbf{Y})$$

Regression with L2 loss inadequate

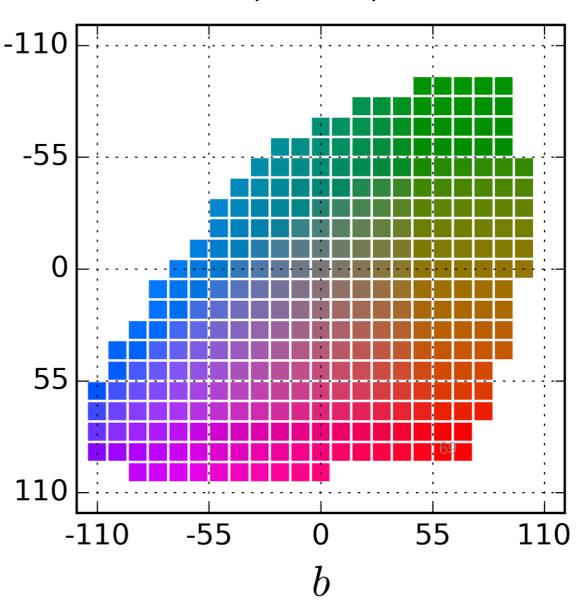
$$L_2(\widehat{\mathbf{Y}}, \mathbf{Y}) = \frac{1}{2} \sum_{h,w} ||\mathbf{Y}_{h,w} - \widehat{\mathbf{Y}}_{h,w}||_2^2$$

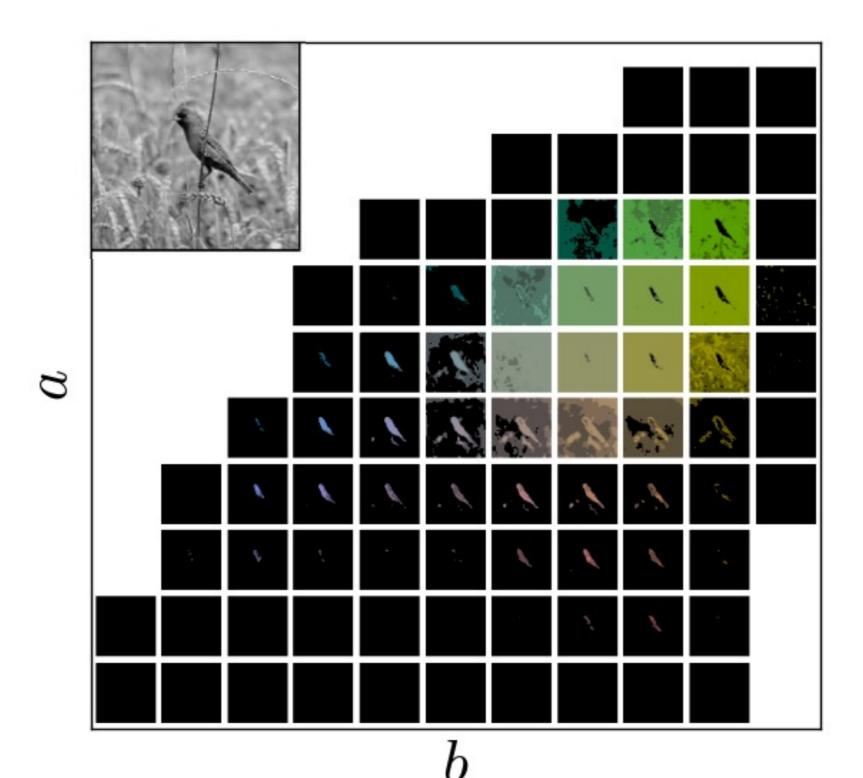
• Use per-pixel multinomial classification

$$L(\widehat{\mathbf{Z}}, \mathbf{Z}) = -\frac{1}{HW} \sum_{h, w} \sum_{q} \mathbf{Z}_{h, w, q} \log(\widehat{\mathbf{Z}}_{h, w, q})$$

Colors in ab space

(discrete)





Designing loss functions

Input

Zhang et al. 2016

Ground truth

Color distribution cross-entropy loss with colorfulness enhancing term.

[Zhang, Isola, Efros, ECCV 2016]

Thank You!

16-726, Spring 2023

https://learning-image-synthesis.github.io/